skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The relative f -invariant and non-uniform random sofic approximations
Abstract The f -invariant is an isomorphism invariant of free-group measure-preserving actions introduced by Lewis Bowen, who first used it to show that two finite-entropy Bernoulli shifts over a finitely generated free group can be isomorphic only if their base measures have the same Shannon entropy. Bowen also showed that the f -invariant is a variant of sofic entropy; in particular, it is the exponential growth rate of the expected number of good models over a uniform random homomorphism. In this paper we present an analogous formula for the relative f -invariant and use it to prove a formula for the exponential growth rate of the expected number of good models over a random sofic approximation which is a type of stochastic block model.  more » « less
Award ID(s):
1855694
PAR ID:
10398463
Author(s) / Creator(s):
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
ISSN:
0143-3857
Page Range / eLocation ID:
1 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A sofic approximation to a countable group is a sequence of partial actions on finite sets that asymptotically approximates the action of the group on itself by left-translations. A group is sofic if it admits a sofic approximation. Sofic entropy theory is a generalization of classical entropy theory in dynamics to actions by sofic groups. However, the sofic entropy of an action may depend on a choice of sofic approximation. All previously known examples showing this dependence rely on degenerate behavior. This paper exhibits an explicit example of a mixing subshift of finite type with two different positive sofic entropies. The example is inspired by statistical physics literature on 2-colorings of random hyper-graphs. 
    more » « less
  2. Abstract Recent work of Barbieri and Meyerovitch has shown that, for very general spin systems indexed by sofic groups, equilibrium (i.e. pressure-maximizing) states are Gibbs. The main goal of this paper is to show that the converse fails in an interesting way: for the Ising model on a free group, the free-boundary state typically fails to be equilibrium as long as it is not theonlyGibbs state. For every temperature between the uniqueness and reconstruction thresholds a typical sofic approximation gives this state finite but non-maximal pressure, and for every lower temperature the pressure is non-maximal overeverysofic approximation. We also show that, for more general interactions on sofic groups, the local on average limit of Gibbs states over a sofic approximation Σ, if it exists, is a mixture of Σ-equilibrium states. We use this to show that the plus- and minus-boundary-condition Ising states are Σ-equilibrium if Σ is any sofic approximation to a free group. Combined with a result of Dembo and Montanari, this implies that these states have the same entropy over every sofic approximation. 
    more » « less
  3. Abstract We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities. 
    more » « less
  4. null (Ed.)
    Kolmogorov–Sinai entropy is an invariant of measure-preserving actions of the group of integers that is central to classification theory. There are two recently developed invariants, sofic entropy and Rokhlin entropy, that generalize classical entropy to actions of countable groups. These new theories have counterintuitive properties such as factor maps that increase entropy. This survey article focusses on examples, many of which have not appeared before, that highlight the differences and similarities with classical theory. 
    more » « less
  5. We introduce and study the barcode entropy for geodesic flows of closed Riemannian manifolds, which measures the exponential growth rate of the number of not-too-short bars in the Morse-theoretic barcode of the energy functional. We prove that the barcode entropy bounds from below the topological entropy of the geodesic flow and, conversely, bounds from above the topological entropy of any hyperbolic compact invariant set. As a consequence, for Riemannian metrics on surfaces, the barcode entropy is equal to the topological entropy. A key to the proofs and of independent interest is a crossing energy theorem for gradient flow lines of the energy functional. 
    more » « less