We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer repre- sentation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u∗) and the cross-isobaric angle (α0) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z0). We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.
more »
« less
Exploring influences of shallow topography in stable boundary layers: The SAVANT Field Campaign
Abstract Stable boundary layers are still a relatively problematic component of atmospheric modeling, despite their frequent occurrence. While general agreement exists that Monin-Obukhov similarity is not applicable in the stable boundary layer (SBL) due to the non-homogeneous, non-stationary flow, no universal organizing theory for the surface SBL has been presented. The SAVANT (Stable Atmospheric Variability ANd Transport) field campaign took place in the fall of 2018 to explore under what conditions shallow drainage flow is generated. The campaign took place in an agricultural setting and covered the period of both pre- and post-harvest, allowing for not only a basic exploration of the boundary layer but a robust data set for applied agricultural understanding of aerosol dispersion, and impacts of changes in surface cover on drainage flows. This article provides a description of the field campaign. Examples of publicly available data products are presented, as well as examples of shallow drainage flow and corresponding lidar measurements of dispersion. Additionally, the field campaign was used to provide educational opportunities for students from several disciplines and the outcomes of these joint educational ventures are discussed as models for future collaborations.
more »
« less
- PAR ID:
- 10398477
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- ISSN:
- 0003-0007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Terrain slopes with and without upslope large surface roughness impact downstream shear‐generated turbulence differently in the nighttime stable boundary layer (SBL). These differences can be identified through variations in the relationship between turbulence and wind speed at a given height, known as the HOckey STick (HOST) transition, as compared to the HOST relationship over flat terrain. The transport of cold surface air from elevated uniform terrain reduces downstream air temperature not much air stratification. As terrain slope rises, the increasing cold and heavy air enhances downstream hydrostatic imbalance, resulting in increasing turbulence for a given wind speed. That is, the rate of turbulence increase with wind speed from downslope flow is independent of terrain slope. Upslope large surface roughness elements enhance vertical turbulent mixing, elevating cold surface air from the terrain. Horizontal transport of this elevated, cold, turbulent air layer reduces the downstream upper warm air temperature. Benefiting from the progressive reduction of downstream stable stratification with increasing height in the SBL, wind shear can effectively generate strong turbulence. In addition to the turbulence enhancement from the cold downslope flow, the rate of turbulence increase with wind speed is elevated. This study demonstrates key physical mechanisms for turbulence generation captured by the HOST relationship. It also highlights the influence of terrain features on these mechanisms through deviations from the HOST relationship over flat terrain.more » « less
-
We investigate how effective surface length scales (Le f f ) and atmospheric boundary layer stability modulate surface-induced secondary circulations over a realistic heterogeneous sur- face. The evolution of the circulations and their impact on surface-atmosphere fluxes are studied using coupled large eddy simulations of the CHEESEHEAD19 field campaign. The heterogeneity-induced circulations were diagnosed using time and ensemble averaging of the atmospheric fields. Simulations were performed for summer (August) and autumn (Septem- ber) Intensive Observation Periods of the field campaign, characterised differently in terms of normalised surface length scales and ABL stability. Quasi-stationary and persistent cir- culations were diagnosed in the daytime ABL that span the entire mixed layer height (zi ). Their variation in time and space are presented. Homogeneous control runs were also per- formed to compare and contrast spatial organisation and validate the time-ensemble averaging operation. In the convective boundary layers simulated during the summer time simulations, wavelengths that scale as the effective surface heterogeneity length scales contribute the most to the heterogeneity-induced transport. Contributions from surface-induced circulations were lower in the simulated near-neutral BL for the autumn simulations. We find that both Le f f /zi and ABL static stability control the relative contribution of surface-induced circulations to the area averaged vertical transport. This scale analysis supports prior work over the study domain on scaling tower measured fluxes by including low frequency contribution. We believe that the conceptual framework presented here can be extended to include the effects of sub-grid land surface heterogeneity in numerical weather prediction and climate models and also to further explore scale-aware scaling methodologies for near surface-atmosphere exchanges.more » « less
-
null (Ed.)Abstract In the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.more » « less
-
Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions.more » « less
An official website of the United States government

