skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of Terrain Slope and Surface Roughness Variations on Turbulence Generation in the Nighttime Stable Boundary Layer
Abstract Terrain slopes with and without upslope large surface roughness impact downstream shear‐generated turbulence differently in the nighttime stable boundary layer (SBL). These differences can be identified through variations in the relationship between turbulence and wind speed at a given height, known as the HOckey STick (HOST) transition, as compared to the HOST relationship over flat terrain. The transport of cold surface air from elevated uniform terrain reduces downstream air temperature not much air stratification. As terrain slope rises, the increasing cold and heavy air enhances downstream hydrostatic imbalance, resulting in increasing turbulence for a given wind speed. That is, the rate of turbulence increase with wind speed from downslope flow is independent of terrain slope. Upslope large surface roughness elements enhance vertical turbulent mixing, elevating cold surface air from the terrain. Horizontal transport of this elevated, cold, turbulent air layer reduces the downstream upper warm air temperature. Benefiting from the progressive reduction of downstream stable stratification with increasing height in the SBL, wind shear can effectively generate strong turbulence. In addition to the turbulence enhancement from the cold downslope flow, the rate of turbulence increase with wind speed is elevated. This study demonstrates key physical mechanisms for turbulence generation captured by the HOST relationship. It also highlights the influence of terrain features on these mechanisms through deviations from the HOST relationship over flat terrain.  more » « less
Award ID(s):
2220664 2203248 2231229 2220662 2220663
PAR ID:
10580995
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
130
Issue:
6
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the influence of roughness and terrain slope on stable boundary layer turbulence is challenging. This is investigated using observations collected from October to November of 2018 during the Stable Atmospheric Variability ANd Transport (SAVANT) field campaign conducted in a shallow sloping Midwestern field. We analyze the turbulence velocity scale and its variation with the mean wind speed using observations up to 10–20 m on four meteorological towers located along a shallow gully. The roughness length for momentum over this complex terrain varied with wind direction from 0.0049 m to a maximum of 0.12 m for winds coming through deciduous trees present in the field. The variation of the turbulence velocity with wind speed shows a transition from a weak wind regime to a stronger wind regime, as reported by past studies. This transition is not observed for winds coming from the tree area, where turbulence is enhanced even for weak wind speeds. For weak stratification and stronger winds, the turbulent velocity scale increased with an increase in roughness while the terrain slope is seen to have a weak influence. The sizes of the dominant turbulent eddies seen from the vertical velocity power spectra are observed to be larger for winds coming through the tree area. The turbulence enhancement by the trees is found to be strong within a fetch distance of 7 times the tree height and not observable at 16 times of the tree height. 
    more » « less
  2. As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated. 
    more » « less
  3. Our study examines the horizontal variation of the nocturnal surface air temperature by analyzing measurements from four contrasting networks of stations with generally modest topography. The horizontal extent of the networks ranges from 1 to 23 km. For each network, we investigate the general relationship of the horizontal variation of temperature to the wind speed, wind direction, near-surface stratification, and turbulence. As an example, the horizontal variation of temperature generally increases with increasing stratification and decreases with increasing wind speed. However, quantitative details vary significantly between the networks. Needed changes of the observational strategy are discussed. 
    more » « less
  4. null (Ed.)
    Abstract Physical processes represented by the Monin–Obukhov bulk formula for momentum are investigated with field observations. We discuss important differences between turbulent mixing by the most energetic non-local, large, coherent turbulence eddies and local turbulent mixing as traditionally represented by K-theory (analog to molecular diffusion), especially in consideration of developing surface-layer stratification. The study indicates that the neutral state in a horizontally homogeneous surface layer described in the Monin–Obukhov bulk formula represents a special neutrality regardless of wind speed, for example, the surface layer with no surface heating/cooling. Under this situation, the Monin–Obukhov bulk formula agrees well with observations for heights to at least 30 m. As the surface layer is stratified, stably or unstably, the neutral state is achieved by mechanically generated turbulent mixing through the most energetic non-local coherent eddies. The observed neutral relationship between $$u_*$$ u ∗ (the square root of the momentum flux magnitude) and wind speed V at any height is different from that described by the Monin–Obukhov formula except within several metres of the surface. The deviation of the Monin–Obukhov neutral $$u_*-V$$ u ∗ - V linear relation from the observed one increases with height and contributes to the deteriorating performance of the bulk formula with increasing height, which cannot be compensated by stability functions. Based on these analyses, estimation of drag coefficients is discussed as well. 
    more » « less
  5. Abstract In order to understand the impact of irrigation on weather and climate, the 2018 Great Plains Irrigation Experiment collected comprehensive observations straddling irrigated and non‐irrigated regions in southeast Nebraska. Using these observations, we examine how irrigation affects diurnal terrain‐generated slope circulations, specifically the slope wind. We find that irrigation applied to upslope regions of gently sloping terrain reduces terrain‐induced baroclinicity and the associated pressure gradient force by up to two‐thirds. This leads to the reduction in the afternoon and evening upslope wind and is supported through comparisons to the High‐Resolution Rapid Refresh operational model, which does not explicitly account for irrigation. Additionally, the presence of irrigation decreases daytime sensible heat flux (Bowen ratio reduced 40% compared to non‐irrigated regions), weakening turbulent transport of momentum. Modifications to the terrain‐forced circulation by irrigation has the potential to affect moisture transport and thus cloud and precipitation formation over the Great Plains. 
    more » « less