Abstract A probability measure-preserving action of a discrete amenable groupGis said to bedominantif it is isomorphic to a generic extension of itself. Recently, it was shown that for$$G = \mathbb {Z}$$, an action is dominant if and only if it has positive entropy and that for anyG, positive entropy implies dominance. In this paper, we show that the converse also holds for anyG, that is, that zero entropy implies non-dominance.
more »
« less
An ergodic system is dominant exactly when it has positive entropy
An ergodic dynamical system $$\mathbf{X}$$ is called dominant if it is isomorphic to a generic extension of itself. It was shown by Glasner et al [On some generic classes of ergodic measure preserving transformations. Trans. Moscow Math. Soc. 82 (1) (2021), 15–36] that Bernoulli systems with finite entropy are dominant. In this work, we show first that every ergodic system with positive entropy is dominant, and then that if $$\mathbf{X}$$ has zero entropy, then it is not dominant.
more »
« less
- Award ID(s):
- 1855694
- PAR ID:
- 10398492
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- ISSN:
- 0143-3857
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract A set $$U \subseteq {\mathbb {R}} \times {\mathbb {R}}$$ is universal for countable subsets of $${\mathbb {R}}$$ if and only if for all $$x \in {\mathbb {R}}$$ , the section $$U_x = \{y \in {\mathbb {R}} : U(x,y)\}$$ is countable and for all countable sets $$A \subseteq {\mathbb {R}}$$ , there is an $$x \in {\mathbb {R}}$$ so that $$U_x = A$$ . Define the equivalence relation $$E_U$$ on $${\mathbb {R}}$$ by $$x_0 \ E_U \ x_1$$ if and only if $$U_{x_0} = U_{x_1}$$ , which is the equivalence of codes for countable sets of reals according to U . The Friedman–Stanley jump, $=^+$ , of the equality relation takes the form $$E_{U^*}$$ where $U^*$ is the most natural Borel set that is universal for countable sets. The main result is that $=^+$ and $$E_U$$ for any U that is Borel and universal for countable sets are equivalent up to Borel bireducibility. For all U that are Borel and universal for countable sets, $$E_U$$ is Borel bireducible to $=^+$ . If one assumes a particular instance of $$\mathbf {\Sigma }_3^1$$ -generic absoluteness, then for all $$U \subseteq {\mathbb {R}} \times {\mathbb {R}}$$ that are $$\mathbf {\Sigma }_1^1$$ (continuous images of Borel sets) and universal for countable sets, there is a Borel reduction of $=^+$ into $$E_U$$ .more » « less
-
Abstract We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities.more » « less
-
Abstract Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in$$\mathbf {C} ^{n}$$ . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in$$\mathbf {C} ^{2}$$ , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.more » « less
-
We study the problem of robust multivariate polynomial regression: let p\colon\mathbb{R}^n\to\mathbb{R} be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R} that are noisy versions of (\mathbf{x}_i,p(\mathbf{x}_i)). More precisely, each \mathbf{x}_i is sampled independently from some distribution \chi on [-1,1]^n, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most \rho < 1/2, and otherwise satisfies |y_i-p(\mathbf{x}_i)|\leq\sigma. The goal is to output a polynomial \hat{p}, of degree at most d in each variable, within an \ell_\infty-distance of at most O(\sigma) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n=1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(d^n\log d), where the hidden constant depends on n, if \chi is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}\log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(\sigma), and the run-time depends on \log(1/\sigma). In the setting where each \mathbf{x}_i and y_i are known up to N bits of precision, the run-time's dependence on N is linear. We also show that our sample complexities are optimal in terms of d^n. Furthermore, we show that it is possible to have the run-time be independent of 1/\sigma, at the cost of a higher sample complexity.more » « less
An official website of the United States government

