The photodissociation dynamics of alkyl iodides along the C–I bond are captured by attosecond extreme-ultraviolet (XUV) transient absorption spectroscopy employing resonant ∼20 fs UV pump pulses. The methodology of previous experiments on CH3I [Chang et al., J. Chem. Phys. 154, 234301 (2021)] is extended to the investigation of a C–I bond-breaking reaction in the dissociative A-band of C2H5I, i-C3H7I, and t-C4H9I. Probing iodine 4 d core-to-valence transitions in the XUV enables one to map wave packet bifurcation at a conical intersection in the A-band as well as coherent vibrations in the ground state of the parent molecules. Analysis of spectroscopic bifurcation signatures yields conical intersection crossing times of 15 ± 4 fs for CH3I, 14 ± 5 fs for C2H5I, and 24 ± 4 fs for i-C3H7I and t-C4H9I, respectively. Observations of coherent vibrations, resulting from a projection of A-band structural dynamics onto the ground state by resonant impulsive stimulated Raman scattering, indirectly reveal multimode C–I stretch and CCI bend vibrations in the A-bands of C2H5I, i-C3H7I, and t-C4H9I.
more »
« less
UV Photodissociation Dynamics of the Acetone Oxide Criegee Intermediate: Experiment and Theory
The photodissociation dynamics of the dimethyl-substituted acetone oxide Criegee intermediate [(CH 3 ) 2 COO] is characterized following electronic excitation on the π*←π transition, which leads to O ( 1 D) + acetone [(CH 3 ) 2 CO, S0] products. The UV action spectrum of (CH 3 ) 2 COO recorded with O ( 1 D) detection under jet-cooled conditions is broad, unstructured, and essentially unchanged from the corresponding electronic absorption spectrum obtained using a UV-induced depletion method. This indicates that UV excitation of (CH 3 ) 2 COO leads predominantly to the O ( 1 D) product channel. A higher energy O ( 3 P) + (CH3)2CO (T1) product channel is not observed, although it is energetically accessible. This is attributed to the relatively weak absorption cross section at UV excitation energies above the threshold. In addition, complementary MS-CASPT2 trajectory surface-hopping (TSH) simulations indicate minimal population leading to the O ( 3 P) channel and non-unity overall probability for dissociation (within 100 fs). Velocity map imaging of the O ( 1 D) products is utilized to reveal the total kinetic energy release (TKER) distribution upon photodissociation of (CH 3 ) 2 COO at various UV excitation energies. Simulation of the TKER distributions is performed using a hybrid model that combines an impulsive model with a statistical component, the latter reflecting the longer-lived (> 100 fs) trajectories identified in the TSH calculations. The impulsive model accounts for vibrational activation of (CH 3 ) 2 CO arising from geometrical changes between the Criegee intermediate and the carbonyl product, indicating the importance of CO stretch, CCO bend, and CC stretch along with activation of hindered rotation and rock of the methyl groups in the (CH 3 ) 2 CO product. Detailed comparison is also made with the TKER distribution arising from photodissociation dynamics of CH 2 OO upon UV excitation.
more »
« less
- Award ID(s):
- 2003422
- PAR ID:
- 10398499
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory‐based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2OO, CH3CHOO, (CH3)2COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene‐derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2OO and (CH3)2COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss ratesviaunimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever‐growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing1ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo‐induced fission of the terminal O–O bond, and speculates about possible alternate decay processes that could occur following non‐adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.more » « less
-
The interaction between aluminum cations and acetone is studied in the gas phase via photodissociation vibrational spectroscopy from 1100 to 2000 cm-1. Spectra of Al+(acetone)(N2) and ions with the stoichiometry of Al+(acetone)n (n=2-5) were measured. The experimental results are compared to DFT calculated vibrational spectra to determine the structures of the complexes. The spectra show a red shift of the C=O stretch and a blue shift of the CCC stretch which decrease as the size of the clusters increases. The calculations predict that the most stable isomer for n≥3 is a pinacolate in which oxidation of the Al+ enables reductive C-C coupling between two acetone ligands. Experimentally, pinacolate formation is observed for n=5, as evidenced by a new peak observed at 1185 cm-1 characteristic of the pinacolate C-O stretch.more » « less
-
ABSTRACT Criegee intermediates make up a class of molecules that are of significant atmospheric importance. Understanding their electronically excited states guides experimental detection and provides insight into whether solar photolysis plays a role in their removal from the troposphere. The latter is particularly important for large and functionalized Criegee intermediates. In this study, the excited state chemistry of two small Criegee intermediates, formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO), was modeled to compare their specific dynamics and mechanisms following excitation to the bright ππ* state and to assess the involvement of triplet states to the excited state decay process. Following excitation to the bright ππ* state, the photoexcited population exclusively evolves to form oxygen plus aldehyde products without the involvement of triplet states. This occurs despite the presence of a more thermodynamically stable triplet path and several singlet/triplet energy crossings at the Franck‐Condon geometry and contrasts with the photodynamics of related systems such as acetaldehyde and acetone. This work sets the foundations to study Criegee intermediates with greater molecular complexity, wherein a bathochromic shift in the electron absorption profiles may ensure greater removalviasolar photolysis.more » « less
-
Vibrational spectra of a series of gas-phase metal 1+ and 2+ ions solvated by acetone molecules are collected to investigate how the metal charge, number of solvent molecules and nature of the metal affect the acetone. The spectra of Cu+(Ace)(N2)2, Cu+(Ace)4, and M2+(Ace)4, where M = Co, Ni, Cu, and Zn are measured via photodissociation by monitoring fragment ion signal as a function of IR wavenumber. The spectra show a red shift of the C=O stretch and a blue shift of the C–C antisymmetric stretch. DFT calculations are carried out to provide the simulated spectra of possible isomers to be compared with the observed vibrational spectra, and specific structures are proposed. The red shift of the C=O stretch increases as the number of acetone molecules decreases. Higher charge on the metal leads to a larger red shift in the C=O stretch. Although all of the M2+ complexes have very similar red shifts, they are predicted to have different geometries due to their different electron configurations. Unexpectedly, we find that the calculated red shift in the C=O stretch in M+/2+(Ace) is highly linearly correlated with the ionization energy of the metal for a wide range of metal cations and dications.more » « less