skip to main content


Title: Evolution and diversification of reproductive phased small interfering RNAs in Oryza species
Summary

In grasses, two types of phased, small interfering RNAs (phasiRNAs) are expressed largely in young, developing anthers. They are 21 or 24 nucleotides (nt) in length and are triggered by miR2118 or miR2275, respectively. However, most of their functions and activities are not fully understood.

We performed comparative genomic analysis of their source loci (PHAS) in fiveOryzagenomes and combined this with analysis of high‐throughput sRNA and degradome datasets. In total, we identified 8216 21‐PHASand 626 24‐PHASloci. Local tandem and segmental duplications mainly contributed to the expansion and supercluster distribution of the 21‐PHASloci. Despite their relatively conserved genomic positions,PHASsequences diverged rapidly, except for the miR2118/2275 target sites, which were under strong selection for conservation.

We found that 21‐nt phasiRNAs with a 5′‐terminal uridine (U) demonstratedcis‐cleavage atPHASprecursors, and thesecis‐acting sites were also variable among close species. miR2118 could trigger phasiRNA production from its own antisense transcript and the derived phasiRNAs might reversibly regulate miR2118 precursors.

We hypothesised that successful initiation of phasiRNA biogenesis is conservatively maintained, while phasiRNA products diverged quickly and are not individually conserved. In particular, phasiRNA production is under the control of multiple reciprocal regulation mechanisms.

 
more » « less
Award ID(s):
1754097
NSF-PAR ID:
10398541
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
229
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2970-2983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    In maize, 24‐nt phased, secondary small interfering RNAs (phasiRNAs) are abundant in meiotic stage anthers, but their distribution and functions are not precisely known.

    Using laser capture microdissection, we analyzed tapetal cells, meiocytes and other somatic cells at several stages of anther development to establish the timing of 24‐PHASprecursor transcripts and the 24‐nt phasiRNA products.

    By integrating RNA and small RNA profiling plus single‐molecule and small RNA FISH (smFISH or sRNA‐FISH) spatial detection, we demonstrate that the tapetum is the primary site of 24‐PHASprecursor andDcl5transcripts and the resulting 24‐nt phasiRNAs. Interestingly, 24‐nt phasiRNAs accumulate in all cell types, with the highest levels in meiocytes, followed by tapetum.

    Our data support the conclusion that 24‐nt phasiRNAs are mobile from tapetum to meiocytes and to other somatic cells. We discuss possible roles for 24‐nt phasiRNAs in anther cell types.

     
    more » « less
  2. Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs–named premeiotic 24-nt phasiRNAs–have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediatingPHASprecursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.

     
    more » « less
  3. SUMMARY

    The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as21‐or24‐PHASloci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate anyPHASlocus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the21‐or24‐PHASloci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23.Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with21‐PHASloci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of21‐PHASloci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of24‐PHASloci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either21‐PHASor24‐PHASloci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductivePHASloci.

     
    more » « less
  4. Summary

    Phased secondary siRNAs (phasiRNAs) are broadly present in the reproductive tissues of flowering plants, with spatial–temporal specificity. However, the ARGONAUTE (AGO) proteins associated with phasiRNAs and their miRNA triggers remain elusive.

    Here, through histological and high‐throughput sequencing analyses, we show that rice AGO1d, which is specifically expressed in anther wall cells before and during meiosis, associates with both miR2118 and miR2275 to mediate phasiRNA biogenesis.

    AGO1d preferentially binds to miR2118‐triggered 21‐nucleotide (nt) phasiRNAs with a 5′‐terminal uridine, suggesting a dual role in phasiRNA biogenesis and function. Depletion of AGO1d causes a reduction of 21‐ and 24‐nt phasiRNAs and temperature‐sensitive male sterility. At lower temperatures, anthers of theago1dmutant predominantly show excessive tapetal cells with little starch accumulation during pollen formation, possibly caused by the dysregulation of cell metabolism.

    These results uncover an essential role of AGO1d in rice anther development at lower temperatures and demonstrate coordinative roles of AGO proteins during reproductive phasiRNA biogenesis and function.

     
    more » « less
  5. Abstract The spatiotemporal development of somatic tissues of the anther lobe is necessary for successful fertile pollen production. This process is mediated by many transcription factors acting through complex, multi-layered networks. Here, our analysis of functional knockout mutants of interacting basic helix–loop–helix genes Ms23, Ms32, basic helix–loop–helix 122 (bHLH122), and bHLH51 in maize (Zea mays) established that male fertility requires all four genes, expressed sequentially in the tapetum (TP). Not only do they regulate each other, but also they encode proteins that form heterodimers that act collaboratively to guide many cellular processes at specific developmental stages. MS23 is confirmed to be the master factor, as the ms23 mutant showed the earliest developmental defect, cytologically visible in the TP, with the most drastic alterations in premeiotic gene expression observed in ms23 anthers. Notably, the male-sterile ms23, ms32, and bhlh122-1 mutants lack 24-nt phased secondary small interfering RNAs (phasiRNAs) and the precursor transcripts from the corresponding 24-PHAS loci, while the bhlh51-1 mutant has wild-type levels of both precursors and small RNA products. Multiple lines of evidence suggest that 24-nt phasiRNA biogenesis primarily occurs downstream of MS23 and MS32, both of which directly activate Dcl5 and are required for most 24-PHAS transcription, with bHLH122 playing a distinct role in 24-PHAS transcription. 
    more » « less