skip to main content


Title: Spatial learning overshadows learning novel odors and sounds in both predatory and frugivorous bats
Abstract

To forage efficiently, animals should selectively attend to and remember the cues of food that best predict future meals. One hypothesis is that animals with different foraging strategies should vary in their reliance on spatial versus feature cues. Specifically, animals that store food in dispersed caches or that feed on spatially stable food, such as fruits or flowers, should be relatively biased towards learning a meal’s location, whereas predators that hunt mobile prey should instead be relatively biased towards learning feature cues such as odor or sound. Several authors have predicted that nectar-feeding and fruit-feeding bats would rely relatively more on spatial cues, whereas closely related predatory bats would rely more on feature cues, yet no experiment has compared these two foraging strategies under the same conditions. To test this hypothesis, we compared learning in the frugivorous bat, Artibeus jamaicensis, and the predatory bat, Lophostoma silvicolum, which hunts katydids using acoustic cues. We trained bats to find food paired with a unique and novel odor, sound, and location. To assess which cues each bat had learned, we then dissociated these cues to create conflicting information. Rather than finding that the frugivore and predator clearly differ in their relative reliance on spatial versus feature cues, we found that both species used spatial cues over sounds or odors in subsequent foraging decisions. We interpret these results alongside past findings on how foraging animals use spatial cues versus feature cues, and explore why spatial cues may be fundamentally more rich, salient, or memorable.

 
more » « less
Award ID(s):
2015928
NSF-PAR ID:
10398568
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Behavioral Ecology
Volume:
34
Issue:
3
ISSN:
1045-2249
Format(s):
Medium: X Size: p. 325-333
Size(s):
["p. 325-333"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration. 
    more » « less
  2. Abstract

    The acoustic environment can serve as a niche axis, structuring animal behaviour by providing or obscuring salient information. Meadow katydid choruses occupy the ultrasonic, less studied, realm of this acoustic milieu, form dense populations in some habitats and present a potential sensory challenge to co‐occurring ultrasonic‐hearing animals. Aerial‐hawking insectivorous bats foraging immediately over vegetation must listen for echoes of their prey and other cues amidst the chorus din.

    We experimentally created the cacophony of a katydid chorus in a katydid‐free rice paddy using an aggregation of 100 ultrasonic speakers in a 25 × 25 m grid to test the hypothesis that aerially hawking bats are averse to this noise source. We alternated between chorus‐on and chorus‐off hourly, and acoustically monitored bat activity and arthropod prey abundance.

    We found that our phantom katydid chorus reduced bat activity nearest the sound source by 39.3% (95% CI: 7.8%–60.0%) for species whose call spectrum fully overlapped with the chorus, and elicited marginal reductions in activity in species with only partial spectral overlap.

    Our study suggests that ultrasonic insect choruses degrade foraging habitat, potentially suppressing bats’ ecosystem services as consumers of pests; and, given the global distribution of meadow katydids, may provide an underappreciated force modifying animal behaviour in other grassland habitats.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    Acoustic communication allows animals to coordinate and optimize resource utilization in space.Cardioderma cor, the heart‐nosed bat, is one of the few species of bats known to sing during nighttime foraging. Previous research found that heart‐nosed bats react aggressively to song playback, supporting the territorial defense hypothesis of singing in this species. We further investigated the territorial defense hypothesis from an ecological standpoint, which predicts that singing should be associated with exclusive areas containing a resource, by tracking 14 individuals nightly during the dry seasons in Tanzania. We quantified the singing behavior of individuals at all perches used throughout the night. Using home range analysis tools, we quantified overall use, night ranges and singing ranges, as well as areas used in early and later time periods at night. Males sang back and forth from small ( = 3.48 ± 2.71 ha), largely exclusive areas that overlapped with overall night ranges used for gleaning prey. Individuals varied in singing effort; however, all sang significantly more as night progressed. Subsequently, areas used earlier at night and overall use areas were both larger than singing areas. Individuals varied in singing strategies. Some males sang for long periods in particular trees and had smaller core areas, while others moved frequently among singing trees. The most prolific singers used more perches overall. Our results support the hypothesis that acoustic communication repertoires evolved in support of stable foraging territory advertisement and defense in some bats.

     
    more » « less
  4. Abstract

    Acute auditory processing in bats is typically associated with echolocation. A subset of bats, called gleaners, listens to prey-generated noise to hunt surface-dwelling prey. Gleaners depend less on echolocation to hunt and, therefore, accurate localization of prey-generated noise is necessary for foraging success. Here we studied azimuth sound localization behavior in the pallid bat, a gleaning bat in which spatial encoding has been studied extensively. We tested pallid bats on a relatively difficult open loop task (single sound, duration ≤ 200 ms). The bats were trained to face the midline when stimulus was presented, and this was confirmed with video analysis. Bats localized broadband noise (5–30 kHz) from 1 out of 11 speakers spaced evenly across the horizontal plane of the frontal sound field. Approach to the correct speaker was rewarded. Pallid bats show accurate localization near the midline with mean errors between 3–6°. Remarkably, the accuracy does not decline significantly at peripheral locations with bats averaging  <~7° error upto 72° off midline. Manipulation of stimulus bandwidth shows that higher frequencies (20–30 kHz) are necessary for accurate localization. Comparative studies of gleaning bats will reveal convergent adaptations across auditory systems for non-echolocation-based behaviors in bats.

     
    more » « less
  5. Abstract

    In the evolutionary arms race between predators and their prey, prey often evolve to be as cryptic as they can, while predators in turn hone their sensory strategies to detect prey. Examinations of the sensory strategies implemented by predators to detect their prey, as well as the ecological consequences of these interactions, are at the crux of understanding and predicting predator–prey dynamics.

    We review the sensory strategies used by predators that rely on private information (attending directly to cues and signals generated by their prey) and those that gather social information (attending to the signals and behaviours of others). We focus our enquiry on bats, an ideal group to shed light on these questions given their ecological diversity, varied foraging strategies and wide range of social behaviours.

    We discuss the costs and benefits of using private and social information for foraging. We investigate diverse strategies of information use and examine the effects different predatory strategies have on predator sensory systems.

    We provide an overview of the sensory ecology of information use in hunting in bats and, by identifying current gaps in knowledge, highlight fruitful directions for future research.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less