skip to main content

Title: Statistical Inference of the Value Function for Reinforcement Learning in Infinite-Horizon Settings
Abstract

Reinforcement learning is a general technique that allows an agent to learn an optimal policy and interact with an environment in sequential decision-making problems. The goodness of a policy is measured by its value function starting from some initial state. The focus of this paper was to construct confidence intervals (CIs) for a policy’s value in infinite horizon settings where the number of decision points diverges to infinity. We propose to model the action-value state function (Q-function) associated with a policy based on series/sieve method to derive its confidence interval. When the target policy depends on the observed data as well, we propose a SequentiAl Value Evaluation (SAVE) method to recursively update the estimated policy and its value estimator. As long as either the number of trajectories or the number of decision points diverges to infinity, we show that the proposed CI achieves nominal coverage even in cases where the optimal policy is not unique. Simulation studies are conducted to back up our theoretical findings. We apply the proposed method to a dataset from mobile health studies and find that reinforcement learning algorithms could help improve patient’s health status. A Python implementation of the proposed procedure is available at more » https://github.com/shengzhang37/SAVE.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10398628
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
84
Issue:
3
Page Range or eLocation-ID:
p. 765-793
ISSN:
1369-7412
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we consider the popular tree-based search strategy within the framework of reinforcement learning, the Monte Carlo tree search (MCTS), in the context of the infinite-horizon discounted cost Markov decision process (MDP). Although MCTS is believed to provide an approximate value function for a given state with enough simulations, the claimed proof of this property is incomplete. This is because the variant of MCTS, the upper confidence bound for trees (UCT), analyzed in prior works, uses “logarithmic” bonus term for balancing exploration and exploitation within the tree-based search, following the insights from stochastic multiarm bandit (MAB) literature. In effect, such an approach assumes that the regret of the underlying recursively dependent nonstationary MABs concentrates around their mean exponentially in the number of steps, which is unlikely to hold, even for stationary MABs. As the key contribution of this work, we establish polynomial concentration property of regret for a class of nonstationary MABs. This in turn establishes that the MCTS with appropriate polynomial rather than logarithmic bonus term in UCB has a claimed property. Interestingly enough, empirically successful approaches use a similar polynomial form of MCTS as suggested by our result. Using this as a building block, we arguemore »that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator; that is, it iteratively improves value function approximation for all states because of combining with supervised learning, despite evaluating at only finitely many states. In effect, we establish that to learn an ε approximation of the value function with respect to [Formula: see text] norm, MCTS combined with nearest neighbor requires a sample size scaling as [Formula: see text], where d is the dimension of the state space. This is nearly optimal because of a minimax lower bound of [Formula: see text], suggesting the strength of the variant of MCTS we propose here and our resulting analysis.« less
  2. We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function approximation, we consider a family of Markov games where the reward function and transition kernel possess a linear structure. Both the offline and online settings of the problems are considered. In the offline setting, we control both players and aim to find the Nash equilibrium by minimizing the duality gap. In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret. For both settings, we propose an optimistic variant of the least-squares minimax value iteration algorithm. We show that our algorithm is computationally efficient and provably achieves an [Formula: see text] upper bound on the duality gap and regret, where d is the linear dimension, H the horizon and T the total number of timesteps. Our results do not require additional assumptions on the sampling model. Our setting requires overcoming several new challenges that are absent in Markov decision processes or turn-based Markov games. In particular, to achieve optimism with simultaneous moves, we construct both upper and lower confidence bounds of the value function, and then compute the optimistic policy by solvingmore »a general-sum matrix game with these bounds as the payoff matrices. As finding the Nash equilibrium of a general-sum game is computationally hard, our algorithm instead solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our best knowledge, such a CCE-based scheme for optimism has not appeared in the literature and might be of interest in its own right.« less
  3. Offline policy optimization could have a large impact on many real-world decision-making problems, as online learning may be infeasible in many applications. Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation, and such estimators typically do not require assumptions on the properties and representational capabilities of value function or decision process model function classes. In this paper, we identify an important overfitting phenomenon in optimizing the importance weighted return, in which it may be possible for the learned policy to essentially avoid making aligned decisions for part of the initial state space. We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint, and provide a theoretical justification of the proposed algorithm. We also show the limitations of previous attempts to this approach. We test our algorithm in a healthcare-inspired simulator, a logged dataset collected from real hospitals and continuous control tasks. These experiments show the proposed method yields less overfitting and better test performance compared to state-of-the-art batch reinforcement learning algorithms.
  4. A major challenge in real-world reinforcement learning (RL) is the sparsity of reward feedback. Often, what is available is an intuitive but sparse reward function that only indicates whether the task is completed partially or fully. However, the lack of carefully designed, fine grain feedback implies that most existing RL algorithms fail to learn an acceptable policy in a reasonable time frame. This is because of the large number of exploration actions that the policy has to perform before it gets any useful feedback that it can learn from. In this work, we address this challenging problem by developing an algorithm that exploits the offline demonstration data generated by a sub-optimal behavior policy for faster and efficient online RL in such sparse reward settings. The proposed algorithm, which we call the Learning Online with Guidance Offline (LOGO) algorithm, merges a policy improvement step with an additional policy guidance step by using the offline demonstration data. The key idea is that by obtaining guidance from - not imitating - the offline data, LOGO orients its policy in the manner of the sub-optimal policy, while yet being able to learn beyond and approach optimality. We provide a theoretical analysis of our algorithm,more »and provide a lower bound on the performance improvement in each learning episode. We also extend our algorithm to the even more challenging incomplete observation setting, where the demonstration data contains only a censored version of the true state observation. We demonstrate the superior performance of our algorithm over state-of-the-art approaches on a number of benchmark environments with sparse rewards and censored state. Further, we demonstrate the value of our approach via implementing LOGO on a mobile robot for trajectory tracking and obstacle avoidance, where it shows excellent performance.« less
  5. Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions. This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of \emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon to non-trivially estimate the value of \emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offlinemore »data distribution is close to the distribution of the policy to be evaluated) or significantly stronger representational conditions (beyond realizability).« less