skip to main content


Title: Robust Tests for Treatment Effect in Survival Analysis under Covariate-Adaptive Randomization
Summary

Covariate-adaptive randomization is popular in clinical trials with sequentially arrived patients for balancing treatment assignments across prognostic factors that may have influence on the response. However, existing theory on tests for the treatment effect under covariate-adaptive randomization is limited to tests under linear or generalized linear models, although the covariate-adaptive randomization method has been used in survival analysis for a long time. Often, practitioners will simply adopt a conventional test to compare two treatments, which is controversial since tests derived under simple randomization may not be valid in terms of type I error under other randomization schemes. We derive the asymptotic distribution of the partial likelihood score function under covariate-adaptive randomization and a working model that is subject to possible model misspecification. Using this general result, we prove that the partial likelihood score test that is robust against model misspecification under simple randomization is no longer robust but conservative under covariate-adaptive randomization. We also show that the unstratified log-rank test is conservative and the stratified log-rank test remains valid under covariate-adaptive randomization. We propose a modification to variance estimation in the partial likelihood score test, which leads to a score test that is valid and robust against arbitrary model misspecification under a large family of covariate-adaptive randomization schemes including simple randomization. Furthermore, we show that the modified partial likelihood score test derived under a correctly specified model is more powerful than log-rank-type tests in terms of Pitman’s asymptotic relative efficiency. Simulation studies about the type I error and power of various tests are presented under several popular randomization schemes.

 
more » « less
NSF-PAR ID:
10398636
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
82
Issue:
5
ISSN:
1369-7412
Format(s):
Medium: X Size: p. 1301-1323
Size(s):
["p. 1301-1323"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Some covariate-adaptive randomization methods have been used in clinical trials for a long time, but little theoretical work has been done about testing hypotheses under covariate-adaptive randomization until Shao et al. (2010) who provided a theory with detailed discussion for responses under linear models. In this article, we establish some asymptotic results for covariate-adaptive biased coin randomization under generalized linear models with possibly unknown link functions. We show that the simple t-test without using any covariate is conservative under covariate-adaptive biased coin randomization in terms of its Type I error rate, and that a valid test using the bootstrap can be constructed. This bootstrap test, utilizing covariates in the randomization scheme, is shown to be asymptotically as efficient as Wald's test correctly using covariates in the analysis. Thus, the efficiency loss due to not using covariates in the analysis can be recovered by utilizing covariates in covariate-adaptive biased coin randomization. Our theory is illustrated with two most popular types of discrete outcomes, binary responses and event counts under the Poisson model, and exponentially distributed continuous responses. We also show that an alternative simple test without using any covariate under the Poisson model has an inflated Type I error rate under simple randomization, but is valid under covariate-adaptive biased coin randomization. Effects on the validity of tests due to model misspecification is also discussed. Simulation studies about the Type I errors and powers of several tests are presented for both discrete and continuous responses.

     
    more » « less
  2. This paper studies inference in randomized controlled trials with covariate‐adaptive randomization when there are multiple treatments. More specifically, we study in this setting inference about the average effect of one or more treatments relative to other treatments or a control. As in Bugni, Canay, and Shaikh (2018), covariate‐adaptive randomization refers to randomization schemes that first stratify according to baseline covariates and then assign treatment status so as to achieve “balance” within each stratum. Importantly, in contrast to Bugni, Canay, and Shaikh (2018), we not only allow for multiple treatments, but further allow for the proportion of units being assigned to each of the treatments to vary across strata. We first study the properties of estimators derived from a “fully saturated” linear regression, that is, a linear regression of the outcome on all interactions between indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are invalid in the sense that they may have limiting rejection probability under the null hypothesis strictly greater than the nominal level; on the other hand, tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact in the sense that they have limiting rejection probability under the null hypothesis equal to the nominal level. For the special case in which the target proportion of units being assigned to each of the treatments does not vary across strata, we additionally consider tests based on estimators derived from a linear regression with “strata fixed effects,” that is, a linear regression of the outcome on indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are conservative in the sense that they have limiting rejection probability under the null hypothesis no greater than and typically strictly less than the nominal level, but tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact, thereby generalizing results in Bugni, Canay, and Shaikh (2018) for the case of a single treatment to multiple treatments. A simulation study and an empirical application illustrate the practical relevance of our theoretical results. 
    more » « less
  3. Abstract

    “Covariate adjustment” in the randomized trial context refers to an estimator of the average treatment effect that adjusts for chance imbalances between study arms in baseline variables (called “covariates”). The baseline variables could include, for example, age, sex, disease severity, and biomarkers. According to two surveys of clinical trial reports, there is confusion about the statistical properties of covariate adjustment. We focus on the analysis of covariance (ANCOVA) estimator, which involves fitting a linear model for the outcome given the treatment arm and baseline variables, and trials that use simple randomization with equal probability of assignment to treatment and control. We prove the following new (to the best of our knowledge) robustness property of ANCOVA to arbitrary model misspecification: Not only is the ANCOVA point estimate consistent (as proved by Yang and Tsiatis, 2001) but so is its standard error. This implies that confidence intervals and hypothesis tests conducted as if the linear model were correct are still asymptotically valid even when the linear model is arbitrarily misspecified, for example, when the baseline variables are nonlinearly related to the outcome or there is treatment effect heterogeneity. We also give a simple, robust formula for the variance reduction (equivalently, sample size reduction) from using ANCOVA. By reanalyzing completed randomized trials for mild cognitive impairment, schizophrenia, and depression, we demonstrate how ANCOVA can achieve variance reductions of 4 to 32%.

     
    more » « less
  4. Abstract

    It is common to conduct causal inference in matched observational studies by proceeding as though treatment assignments within matched sets are assigned uniformly at random and using this distribution as the basis for inference. This approach ignores observed discrepancies in matched sets that may be consequential for the distribution of treatment, which are succinctly captured by within-set differences in the propensity score. We address this problem via covariate-adaptive randomization inference, which modifies the permutation probabilities to vary with estimated propensity score discrepancies and avoids requirements to exclude matched pairs or model an outcome variable. We show that the test achieves type I error control arbitrarily close to the nominal level when large samples are available for propensity score estimation. We characterize the large-sample behaviour of the new randomization test for a difference-in-means estimator of a constant additive effect. We also show that existing methods of sensitivity analysis generalize effectively to covariate-adaptive randomization inference. Finally, we evaluate the empirical value of combining matching and covariate-adaptive randomization procedures using simulations and analyses of genetic damage among welders and right-heart catheterization in surgical patients.

     
    more » « less
  5. Summary

    This paper studies inference on finite-population average and local average treatment effects under limited overlap, meaning that some strata have a small proportion of treated or untreated units. We model limited overlap in an asymptotic framework, sending the propensity score to zero (or one) with the sample size. We derive the asymptotic distribution of analogue estimators of the treatment effects under two common randomization schemes: conditionally independent and stratified block randomization. Under either scheme, the limit distribution is the same and conventional standard error formulas remain asymptotically valid, but the rate of convergence is slower the faster the propensity score degenerates. The practical import of these results is two-fold. When overlap is limited, standard methods can perform poorly in smaller samples, as asymptotic approximations are inadequate owing to the slower rate of convergence. However, in larger samples, standard methods can work quite well even when the propensity score is small.

     
    more » « less