skip to main content

Title: Automation and New Tasks: How Technology Displaces and Reinstates Labor
We present a framework for understanding the effects of automation and other types of technological changes on labor demand, and use it to interpret changes in US employment over the recent past. At the center of our framework is the allocation of tasks to capital and labor—the task content of production. Automation, which enables capital to replace labor in tasks it was previously engaged in, shifts the task content of production against labor because of a displacement effect. As a result, automation always reduces the labor share in value added and may reduce labor demand even as it raises productivity. The effects of automation are counterbalanced by the creation of new tasks in which labor has a comparative advantage. The introduction of new tasks changes the task content of production in favor of labor because of a reinstatement effect, and always raises the labor share and labor demand. We show how the role of changes in the task content of production—due to automation and new tasks—can be inferred from industry-level data. Our empirical decomposition suggests that the slower growth of employment over the last three decades is accounted for by an acceleration in the displacement effect, especially in manufacturing, a more » weaker reinstatement effect, and slower growth of productivity than in previous decades. « less
Award ID(s):
Publication Date:
Journal Name:
Journal of Economic Perspectives
Page Range or eLocation-ID:
3 to 30
Sponsoring Org:
National Science Foundation
More Like this
  1. We document that between 50% and 70% of changes in the U.S. wage structure over the last four decades are accounted for by relative wage declines of worker groups specialized in routine tasks in industries experiencing rapid automation. We develop a conceptual framework where tasks across industries are allocated to different types of labor and capital. Automation technologies expand the set of tasks performed by capital, displacing certain worker groups from jobs for which they have comparative advantage. This framework yields a simple equation linking wage changes of a demographic group to the task displacement it experiences. We report robust evidence in favor of this relationship and show that regression models incorporating task displacement explain much of the changes in education wage differentials between 1980 and 2016. The negative relationship between wage changes and task displacement is unaffected when we control for changes in market power, deunionization, and other forms of capital deepening and technology unrelated to automation. We also propose a methodology for evaluating the full general equilibrium effects of automation, which incorporate induced changes in industry composition and ripple effects due to task reallocation across different groups. Our quantitative evaluation explains how major changes in wage inequality canmore »go hand‐in‐hand with modest productivity gains.« less
  2. This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20-30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilledmore »labor but brought limited or ambiguous effects to their employment levels.« less
  3. We measure the labor-demand effects of two simultaneous forms of technological change—automation of production processes and consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with different levels of automation and consolidation. Using the O*NET survey instrument, we collect novel task data for operator laborers that contains process-step level skill requirements, including operations and control, near vision, and dexterity requirements. We then use an engineering process model to separate the effects of the distinct technological changes on these process tasks and operator skill requirements. Within an occupation, we show that aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous technological changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and medium skills are executed by machines instead of humans, whereas the remaining and newly created human tasks tend to require low and high skills. Consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill requirements and higher cost of failure. We conclude by developing a new theory for how the separability of tasks mediates the effect of technology change on skill demand by changingmore »the divisibility of labor.« less
  4. Krueger, Dirk (Ed.)
    Abstract We argue theoretically and document empirically that aging leads to greater (industrial) automation, because it creates a shortage of middle-aged workers specializing in manual production tasks. We show that demographic change is associated with greater adoption of robots and other automation technologies across countries and with more robotics-related activities across U.S. commuting zones. We also document more automation innovation in countries undergoing faster aging. Our directed technological change model predicts that the response of automation technologies to aging should be more pronounced in industries that rely more on middle-aged workers and those that present greater opportunities for automation and that productivity should improve and the labor share should decline relatively in industries that are more amenable to automation. The evidence supports all four of these predictions.
  5. The labor share in U.S. manufacturing declined from 61% in 1967 to 41% in 2012. The labor share of the typical U.S. manufacturing establishment, in contrast, rose by over 3 percentage points during the same period. Using micro-level data, we document five salient facts: (i) since the 1980s, there has been a dramatic reallocation of value added toward the lower end of the labor share distribution; (ii) this aggregate reallocation is not due to entry/exit, to “superstars” growing faster, or to large establishments lowering their labor shares, but is instead due to units whose labor share fell as they grew in size; (iii) low labor share (LL) establishments benefit from high revenue labor productivity, not low wages; (iv) they also enjoy a product price premium relative to their peers; and (v) they have only temporarily lower labor shares that rebound after five to eight years. This transient pattern has become more pronounced over time, and the dynamics of value added and employment are increasingly disconnected. Taken together, we interpret these facts as pointing to a significant role for demand-side forces.