skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Not all technological change is equal: how the separability of tasks mediates the effect of technology change on skill demand
We measure the labor-demand effects of two simultaneous forms of technological change—automation of production processes and consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with different levels of automation and consolidation. Using the O*NET survey instrument, we collect novel task data for operator laborers that contains process-step level skill requirements, including operations and control, near vision, and dexterity requirements. We then use an engineering process model to separate the effects of the distinct technological changes on these process tasks and operator skill requirements. Within an occupation, we show that aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous technological changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and medium skills are executed by machines instead of humans, whereas the remaining and newly created human tasks tend to require low and high skills. Consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill requirements and higher cost of failure. We conclude by developing a new theory for how the separability of tasks mediates the effect of technology change on skill demand by changing the divisibility of labor.  more » « less
Award ID(s):
1854051
PAR ID:
10352242
Author(s) / Creator(s):
Date Published:
Journal Name:
Industrial and corporate change
ISSN:
1464-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a framework for understanding the effects of automation and other types of technological changes on labor demand, and use it to interpret changes in US employment over the recent past. At the center of our framework is the allocation of tasks to capital and labor—the task content of production. Automation, which enables capital to replace labor in tasks it was previously engaged in, shifts the task content of production against labor because of a displacement effect. As a result, automation always reduces the labor share in value added and may reduce labor demand even as it raises productivity. The effects of automation are counterbalanced by the creation of new tasks in which labor has a comparative advantage. The introduction of new tasks changes the task content of production in favor of labor because of a reinstatement effect, and always raises the labor share and labor demand. We show how the role of changes in the task content of production—due to automation and new tasks—can be inferred from industry-level data. Our empirical decomposition suggests that the slower growth of employment over the last three decades is accounted for by an acceleration in the displacement effect, especially in manufacturing, a weaker reinstatement effect, and slower growth of productivity than in previous decades. 
    more » « less
  2. This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20-30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor but brought limited or ambiguous effects to their employment levels. 
    more » « less
  3. Amavilah, Voxi Heinrich (Ed.)
    BackgroundThe fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations. MethodWe first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes. ResultsThe results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years. ConclusionOur results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities. 
    more » « less
  4. We document that between 50% and 70% of changes in the U.S. wage structure over the last four decades are accounted for by relative wage declines of worker groups specialized in routine tasks in industries experiencing rapid automation. We develop a conceptual framework where tasks across industries are allocated to different types of labor and capital. Automation technologies expand the set of tasks performed by capital, displacing certain worker groups from jobs for which they have comparative advantage. This framework yields a simple equation linking wage changes of a demographic group to the task displacement it experiences. We report robust evidence in favor of this relationship and show that regression models incorporating task displacement explain much of the changes in education wage differentials between 1980 and 2016. The negative relationship between wage changes and task displacement is unaffected when we control for changes in market power, deunionization, and other forms of capital deepening and technology unrelated to automation. We also propose a methodology for evaluating the full general equilibrium effects of automation, which incorporate induced changes in industry composition and ripple effects due to task reallocation across different groups. Our quantitative evaluation explains how major changes in wage inequality can go hand‐in‐hand with modest productivity gains. 
    more » « less
  5. We extend the canonical model of skill-biased technical change by modeling the allocation of tasks to factors and allowing for automation and the creation of new tasks. In our model, factor prices depend on the set of tasks they perform. Automation can reduce real wages and generate sizable changes in inequality associated with small productivity gains. New tasks can increase or reduce inequality depending on whether they are performed by skilled or unskilled workers. Industry-level data suggest that automation significantly contributed to the rising skill premium, while new tasks reduced inequality in the past but have contributed to inequality recently. 
    more » « less