skip to main content


Title: Biomechanical Properties of Various Surgical Suture Needles in a Cadaveric Quadriceps Tendon Model
INTRODUCTION: Quadriceps tendon autografts have experienced a rapid rise in popularity for anterior cruciate ligament (ACL) reconstruction due to advantages in graft sizing and potential improvement in biomechanics. While there is a growing body of literature on use of quadriceps tendon grafts, deeper investigation into the biomechanical properties of stitch techniques in this construct has been limited. The purpose of this study was to evaluate the performance of a novel suture needle against different conventional suture needles by comparing the biomechanical properties of two commonly used stitch methods, a whip stitch, and a locking stitch in quadriceps tendon. It was hypothesized that the new device would be capable of creating both whip stitches and locking stitches that are biomechanically equivalent to similar stitch techniques performed with conventional needle products. METHODS: This was a controlled biomechanical study. A total of 24 matched pair cadaveric knees were dissected and a total of 48 quadriceps tendons were harvested and tested. All tendon grafts were standardized to the same size. Samples were then randomized into the following groups, keeping the matched pairs together: (Group 1, n=16) consisted of Company W’s novel two-part suture needle design, (Group 2, n=16) consisted of Company A suture, and (Group 3, n=16) consisted of Company B suture. For each group, the matched pairs were categorized into subgroups to be instrumented with either a whip stitch or a locking stitch. Two fellowship-trained surgeons performed all stitching, where they each instrumented 8 tendon grafts per group. For instrumentation, the grafts were clamped to a preparation stand in accordance with the manufacturer’s recommendations for passing each suture needle. A skin marker was used to identify and mark five evenly spaced points, 0.5 cm apart, as a guide to create a 5-stitch series. For Group 1, the whip stitch as well as the locking whip stitch were performed with a novel 2-part needle. For Group 2, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle. Similarly, for Group 3, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle (Figure 1). Cyclical testing was performed using a servohydraulic testing machine (MTS Bionix) equipped with a 5kN load cell. A standardized length of tendon, 7 cm, was coupled to the MTS actuator by passing it through a cryoclamp cooled by dry ice to a temperature of -5°C (Figure 2). All testing samples were then pre-conditioned to normalize viscoelastic effects and testing variability through application of cyclical loading to 25-100 N for three cycles. The samples were then held at 89 N for 15 minutes. Thereafter, the samples were loaded to 50-200 N for 500 cycles at 1 Hz. If samples survived, they were ramped to failure at 20 mm/min. Displacement and force data was collected throughout testing. Metrics of interest were total elongation (mm), stiffness (N/mm), ultimate failure load (N) and failure mode. Data are presented as averages plus/minus standard deviation. A one-way analysis of variance (ANOVA) with a Tukey pairwise comparison post hoc analysis was used to evaluate differences between the various stitching methods. Statistical significance was set at P = .05. RESULTS SECTION: For the whip stitch methods, the total elongation was found to be equivalent across all methods (W: 36 ± 10 mm; A: 32 ± 18 mm; B: 33 ± 8 mm). The stiffness of Company A (103 ± 11 N/mm) method was significantly larger than Company W (64 ± 8 N/mm; p=.001), whereas stiffness of whip stitch by Company W was equivalent to Company B (80 ± 32 N/mm). The ultimate failure load was equivalent across all whip stitch methods (W: 379 ± 31 mm; A: 412 ± 103 mm; B: 438 ± 63 mm). For the locking stitch method, the total elongation (W: 26 ± 10 mm; A: 14 ± 2 mm; B: 29 ± 5 mm), stiffness (W: 75 ± 11 N/mm; A: 104 ± 23 N/mm; B: 79 ± 10 N/mm) and ultimate load (W: 343 ± 22 N; A: 369 ± 30 N; B: 438 ± 63 N) were found to be equivalent across all methods. The failure mode for all groups is in Table 1. The common mode of failure across study groups and stitch configuration was suture breakage. However, the whip stitch from Company A and Company B had varied failure modes. DISCUSSION: Products from the three manufacturers were found to produce biomechanically equivalent whip stitches and locking stitches with respect to elongation and ultimate failure load. The only significant difference observed was that the whip stitch created with Company A’s product had a higher stiffness than Company W’s product, which could have been due to differences in the suture material. In this cadaveric quadriceps tendon model, it was shown that when using Company W’s novel two-part suture needle, users were capable of creating whip stitches and locking stitches that achieved equivalent biomechanical performance compared to similar stitch techniques performed with conventional needle products. A failure mode limited solely to suture breakage for methods completed with Company W’s needle product suggest a reliable suture construct with limited tissue damage. SIGNIFICANCE/CLINICAL RELEVANCE: Having a suture needle device with the versatility to easily perform different stitching constructs may provide surgeons an advantage needed to improve clinical outcomes. The data presented illustrates a strong new suture technique that has equivalent performance when compared to conventional needle devices and has promising applications in graft preparation for ligament and tendon reconstruction.  more » « less
Award ID(s):
2112103
NSF-PAR ID:
10398743
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Transactions of the annual meeting of the Orthopaedic Research Society
ISSN:
0149-6433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION: In practice, the use of a whip stitch versus a locking stitch in anterior cruciate ligament (ACL) graft preparation is based on surgeon preference. Those who prefer efficiency and shorter stitch time typically choose a whip stitch, while those who require improved biomechanical properties select a locking stitch, the gold standard of which is the Krackow method. The purpose of this study was to evaluate a novel suture needle design that can be used to perform two commonly used stitch methods, a whip stitch, and a locking stitch, by comparing the speed of graft preparation and biomechanical properties. It was hypothesized that adding a locking mechanism to the whip stitch would improve biomechanical performance but would also require more time to complete due to additional steps required for the locking technique. METHODS: Graft preparation was performed by four orthopaedic surgeons of different training levels where User 1 and User 2 were both attendings and User’s 3 and 4 were both fellows. A total of 24 matched pair cadaveric knees were dissected and a total of 48 semitendinosus tendons were harvested. All grafts were standardized to the same size. Tendons were randomly divided into 4 groups (12 tendons per group) such that each User performed analogous stitch on matched pair: Group 1, User 1 and User 3 performed whip stitches; Group 2, User 1 and User 3 performed locking stitches; Group 3, User 2 and User 4 performed whip stitches; Group 4, User 2 and User 4 performed locking stitches. For instrumentation, the two ends of tendon grafts were clamped to a preparation stand. A skin marker was used to mark five evenly spaced points, 0.5 cm apart, as a guide to create a 5-stitch series. The stitches were performed with EasyWhip, a novel two-part suture needle which allows one to do both a traditional whip stitch and a locking whip stitch, referred to as WhipLock (Figure 1). The speed for graft preparation was timed for each User. Biomechanical testing was performed using a servohydraulic testing machine (MTS Bionix) equipped with a 5kN load cell (Figure 2). A standardized length of tendon, 10 cm, was coupled to the MTS actuator by passing it through a cryoclamp cooled by dry ice to a temperature of -5°C. All testing samples were pre-conditioned to normalize viscoelastic effects and testing variability through application of cyclical loading to 25-100 N for three cycles. The samples were then held at 89 N for 15 minutes. Thereafter, the samples were loaded to 50-200 N for 500 cycles at 1 Hz. If samples survived, they were ramped to failure at 20 mm/min. Displacement and force data was collected throughout testing. Metrics of interest were peak-to-peak displacement (mm), stiffness (N/mm), ultimate failure load (N) and failure mode. Data are presented as averages and standard deviations. A Wilcoxon signed-rank test was used to evaluate the groups for time to complete stitch and biomechanical performance. Statistical significance was set at P = .05. RESULTS SECTION: In Group 1, the time to complete the whip stitch was not significantly different between User 1 and User 3, where the average completion time was 1 min 13 sec. Similarly, there were no differences between Users when performing the WhipLock (Group 2) with an average time of 1 min 49 sec. In Group 3 (whip stitch), User 2 took 1 min 48 sec to complete the whip stitch, whereas User 4 took 1 min 25 sec (p=.033). The time to complete the WhipLock stitch (Group 4) was significantly different, where User 2 took 3 min and 44 sec, while User 4 only took 2 min 3 sec (p=.002). Overall, the whip stitch took on average 1 min 25 sec whereas the WhipLock took 2 min 20 sec (p=.001). For whip stitch constructs, no differences were found between Users and all stitches were biomechanically equivalent. Correspondingly, for WhipLock stitches, no differences were found between Users and all suture constructs were likewise biomechanically equivalent. Averages for peak-to-peak displacement (mm), stiffness (N/mm), and ultimate failure load (N) are presented in Table 1. Moreover, when the two stitch methods were compared, the WhipLock constructs significantly increased stiffness by 25% (p <.001), increased ultimate failure load by 35% (p<.001) and reduced peak-to-peak displacement by 55% (p=.001). The common mode of failure for grafts with whip stitch failed by suture pullout from tendon (18/24), where a few instances occurred by suture breakage (6/24). Tendon grafts with WhipLock stitch commonly failed by suture breakage (22/24), where two instances of combined tendon tear and suture breakage were noted. DISCUSSION: The WhipLock stitch significantly increased average construct stiffness and ultimate failure load, while significantly reducing the peak-to- peak displacement compared to the whip stitch. These added strength benefits of the WhipLock stitch took 55 seconds more to complete than the whip stitch. No statistically significant difference in biomechanical performance was found between the Users. Data suggests equivalent stitch performance regardless of the time to complete stitch and surgeon training level. SIGNIFICANCE/CLINICAL RELEVANCE: Clinically, having a suture needle device available which can be used to easily perform different constructs including one with significant strength advantages regardless of level of experience is of benefit. 
    more » « less
  2. null (Ed.)
    In this paper we outline a topological framework for constructing 2-periodic knitted stitches and an algebra for joining stitches together to form more complicated textiles. Our topological framework can be constructed from certain topological “moves" which correspond to “operations" that knitters make when they create a stitch. In knitting, unlike Jacquard weaves, a set of n loops may be combined in topologically nontrivial ways to create n stitches. We define a swatch as a mathematical construction that captures the topological manipulations a hand knitter makes. Swatches can capture the topology of all possible 2-periodic knitted motifs: standard patterns such as garter and ribbing, cables in which stitches connect one row of loops to a permutation of those same loops on the next row much like operators of a braid group, and lace or pieces with shaping which use increases and decreases to disrupt the underlying square lattice of stitches. 
    more » « less
  3. Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. How-ever, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone. 
    more » « less
  4. null (Ed.)
    Abstract Despite occurrence of neonatal hypoxia and peripheral nerve injuries in complicated birthing scenarios, the effect of hypoxia on the biomechanical responses of neonatal peripheral nerves is not studied. In this study, neonatal brachial plexus and tibial nerves, obtained from eight normal and eight hypoxic 3-5 days old piglets, were tested in uniaxial tension until failure at a rate of 0.01 mm/s or 10 mm/s. Failure load, stress, and modulus of elasticity were reported to be significantly lower in hypoxic neonatal brachial plexus (BP) and tibial nerves than respective normal tissue at both 0.01 and 10 mm/s rates. Failure strain was significantly lower in the hypoxic neonatal BP nerves only at 10 mm/s rate when compared to normal BP nerve. This is the first available data that indicates weaker mechanical behavior of hypoxic neonatal peripheral nerves as compared to normal tissue, and offers an understanding of the biomechanical responses of peripheral nerves of hypoxic neonatal piglets. 
    more » « less
  5. Abstract Background

    Conventional needles lack active mechanisms for large tip deflection to bypass obstacles or guide through a desired trajectory in needle‐based procedures, compromising accuracy and effectiveness.

    Methods

    An active needle with a shape memory alloy (SMA) actuator was designed and evaluated by demonstrating deflections in tissue‐mimicking gels. Finite element simulation and real‐time needle tip deflection tracking in tissue‐mimicking gels were performed.

    Results

    The active needle deflected 50 and 39 mm at 150 mm insertion depth in the liver and prostate mimicking gels, respectively. Reasonable simulation errors of 16.42% and 12.62% in needle deflections and small root mean squared errors of 1.42 and 1.47 mm in deflection tracking were obtained.

    Conclusions

    The proposed needle produced desirable large tip deflections capable of bypassing obstacles in the insertion path and tracked a preplanned trajectory with minor errors. The finite element study would help optimise needle designs and predict deflections in soft tissues.

     
    more » « less