Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI.
more »
« less
Full-scale testing of precast tunnel lining segments under thrust jack loading: Design limits and ultimate response
In modern practice, precast segmental tunnel linings are typically installed via a tunnel boring machine (TBM), which advances by thrusting against the previously installed segmental ring. The forces applied through the thrust jack pads can induce significant bursting and spalling tensile stresses and strains in the segment, and improperly designed segments can suffer from cracking as a result. An experimental study has been conducted to evaluate the progression of damage from initial cracking to ultimate capacity for full-scale precast tunnel liner segments under thrust jack loading. The baseline segment design is composed of steel fiber reinforced concrete (SFRC), and the impact of supplemental conventional steel bar reinforcement and load application eccentricity were also investigated. Six full-scale tests were performed with a thrust jack load per pad up to 22.2 MN (which is ~3.8 times the maximum expected installation thrust force). At the maximum expected thrust jack load during installation (5.78 MN per pad), the segments were virtually undamaged, and hairline cracking initiated between the load pads on only one test. At the TBM’s ultimate jacking capacity (9.55 MN per pad) surface cracking was observed between and under the load pads; however, the crack width remained below 0.2 mm for all specimens. The formation of cracking limit states was accurately predicted by pre-test linear and nonlinear finite element (FE) models. At overload conditions, the baseline SFRC-only segment exhibited a radial bursting failure. The inclusion of supplemental conventional reinforcement does not reduce the level of cracking damage or strain development below the TBM’s ultimate jacking capacity; however, at overload conditions, the supplemental reinforcement mitigates cracking and prevents a radial bursting failure at 20.3 MN per pad. A load eccentricity of 38 mm towards the extrados surface increased the transverse strain and the formation of transverse cracking at a lower load level.
more »
« less
- Award ID(s):
- 1950487
- PAR ID:
- 10481225
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Tunnelling and Underground Space Technology
- Volume:
- 142
- Issue:
- C
- ISSN:
- 0886-7798
- Page Range / eLocation ID:
- 105446
- Subject(s) / Keyword(s):
- precast segmental tunnel liner thrust jacking load tunnel boring machine steel fiber reinforced concrete tensile cracking limit states finite element modeling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI.more » « less
-
Massicotte, Bruno; Mobasher, Barzin; Plizzari, Giovanni (Ed.)While widely adopted prescriptive-based design practices work to limit the probability of complete collapse, relatively little attention and emphasis is placed on the damage levels and functionality of structures after seismic events. High-performance fiber reinforced cementitious composites reinforced with steel (R/HPFRCCs) have been of growing interest for such seismic applications to improve structural level damage and performance. In order to progress the implementation of these materials at the structural level, a systematic approach toward understanding the mechanics of R/HPFRCC columns is warranted. Therefore, in this study, an existing numerical framework for R/HPFRCC beams was extended to the analysis of columns across a range of materials, reinforcement ratios, and axial load levels to evaluate the change in component level response. It was observed that axial load can considerably increase the nominal bending moment capacity of R/HPFRCC columns as well as affect the drift capacity. A shift from failure on the tension side of the element (e.g., reinforcement fracture) to the compression side (e.g., crushing of the HPFRCC) of the numerically tested column occurred between an axial load ratio of 10 and 20%. Lastly, changes in bond stress due to the material level tensile strength were shown to considerably impact the ultimate component drift capacity.more » « less
-
Paper-based analytical devices (PADs) offer a low-cost, user-friendly platform for rapid point-of-use testing. Without scalable fabrication methods, however, few PADs make it out of the academic laboratory and into the hands of end users. Previously, wax printing was considered an ideal PAD fabrication method, but given that wax printers are no longer commercially available, alternatives are needed. Here, we present one such alternative: the air-gap PAD. Air-gap PADs consist of hydrophilic paper test zones, separated by “air gaps” and affixed to a hydrophobic backing with double-sided adhesive. The primary appeal of this design is its compatibility with roll-to-roll equipment for large-scale manufacturing. In this study, we examine design considerations for air-gap PADs, compare the performance of wax-printed and air-gap PADs, and report on a pilot-scale roll-to-roll production run of air-gap PADs in partnership with a commercial test-strip manufacturer. Air-gap devices performed comparably to their wax-printed counterparts in Washburn flow experiments, a paper-based titration, and a 12-lane pharmaceutical screening device. Using roll-to-roll manufacturing, we produced 2700 feet of air-gap PADs for as little as $0.03 per PAD.more » « less
-
Thorough accounting of the climate change impacts of natural gas is crucial to guide the energy transition towards climate change mitigation, as even decarbonization roadmaps project continued natural gas use into the future. The climate change impacts of natural gas extraction have not previously been assessed at the well pad level, accounting for a multitude of geospatial differences between individual pads. Well pads constructed across a varied landscape lead to a range of well pad areas, earth flattening needs, well pad lifetimes, total gas production, and direct land use change (DLUC) effects such as loss of original biomass, soil organic carbon loss, change in net primary productivity, and altering the surface albedo of the site. Using existing well pad data, machine learning techniques, and satellite imagery, the spatial extents of thousands of well pads in New Mexico were delineated for site-specific data collection. A parametric life cycle assessment (LCA) model of natural gas-producing well pads was developed to integrate geospatial differences and DLUC effects, yielding scenario analysis results for each identified well pad. The DLUC effects contributed a median of 14.4% and a maximum of 59.0% to natural gas extraction carbon footprints. The use of well pad-level data revealed that the carbon footprint of natural gas extraction ranges across orders of magnitude, from 0.016 to 46.4 g CO2eq per MJ. The results highlight the need to quantify the climate change impacts of establishing a well pad and extracting natural gas case-by-case, with geographically specific data, to guide new installations towards lower emissions.more » « less
An official website of the United States government

