The collective motion observed in living active matter, such as fish schools and bird flocks, is characterized by its dynamic and complex nature, involving various moving states and transitions. By tailoring physical interactions or incorporating information exchange capabilities, inanimate active particles can exhibit similar behavior. However, the lack of synchronous and arbitrary control over individual particles hinders their use as a test system for the study of more intricate collective motions in living species. Herein, a novel optical feedback control system that enables the mimicry of collective motion observed in living objects using active particles is proposed. This system allows for the experimental investigation of the velocity alignment, a seminal model of collective motion (known as the Vicsek model), in a microscale perturbed environment with controllable and realistic conditions. The spontaneous formation of different moving states and dynamic transitions between these states is observed. Additionally, the high robustness of the active‐particle group at the critical density under the influence of different perturbations is quantitatively validated. These findings support the effectiveness of velocity alignment in real perturbed environments, thereby providing a versatile platform for fundamental studies on collective motion and the development of innovative swarm microrobotics.
- Award ID(s):
- 1751498
- NSF-PAR ID:
- 10398749
- Date Published:
- Journal Name:
- Frontiers in Applied Mathematics and Statistics
- Volume:
- 8
- ISSN:
- 2297-4687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams.more » « less
-
Abstract Inferring the size of a collective from the motion of a few accessible units is a fundamental problem in network science and interdisciplinary physics. Here, we recognize stochasticity as the commodity traded in the units’ interactions. Drawing inspiration from the work of Einstein-Perrin-Smoluchowski on the discontinuous structure of matter, we use the random motion of one unit to identify the footprint of every other unit. Just as the Avogadro’s number can be determined from the Brownian motion of a suspended particle in a liquid, the size of the collective can be inferred from the random motion of any unit. For self-propelled Vicsek particles, we demonstrate an inverse proportionality between the diffusion coefficient of the heading of any particle and the size of the collective. We provide a rigorous method to infer the size of a collective from measurements of a few units, strengthening the link between physics and collective behavior.
-
Active matter is differentiated from conventional passive matter due to its unique capability of locally consuming fuels to generate kinetic energy. Such a unique feature of active matter has led to unprecedented phenomena and associated applications. While active matter has been developed for decades, its significance is not recognized by the public. To remedy this gap, we developed an online teaching module introducing collective dynamics of active matter, targeting high school and undergraduate students. The collective dynamics were illustrated via the Vicsek model-based simulation because it reveals the collective dynamics of active matter with one simple rule: nearest-neighbor alignment. With this rule, the simulation demonstrated the collective motion of active matter particles depended on particle number, radius of neighbor aligning, and noise that disturbed alignment. To allow students to hands-on experience the simulation, we developed a graphical user interface, allowing users to perform the Vicsek simulation without a programming background. The simulation and teaching module are available on an online platform: The Partnership for Integration of Computation into Undergraduate Physics, allowing teachers in the US to bring the active matter lecture to their classrooms.more » « less
-
ABSTRACT There are many instances of collective behaviors in the natural world. For example, eukaryotic cells coordinate their motion to heal wounds; bacteria swarm during colony expansion; defects in alignment in growing bacterial populations lead to biofilm growth; and birds move within dynamic flocks. Although the details of how these groups behave vary across animals and species, they share the same qualitative feature: they exhibit collective behaviors that are not simple extensions of details associated with the motion of an individual. To learn more about these biological systems, we propose studying these systems through the lens of the foundational Vicsek model. Here, we present the process of building this computational model from scratch in a tutorial format that focuses on building the appropriate skills of an undergraduate student. In doing so, an undergraduate student should be able to work alongside this article, the corresponding tutorial, and the original manuscript of the Vicsek model to build their own model. We conclude by summarizing some of the current work involving computational modeling of flocking with Vicsek-type models.