skip to main content


Title: Transport-driven seasonal abundance of pelagic fishes in the Chukchi Sea observed with seafloor-mounted echosounders
Abstract

Recent summer surveys of the northeastern Chukchi Sea found pelagic fishes were dominated by large numbers of age-0 Arctic cod (Boreogadus saida, Gadidae) and walleye pollock (Gadus chalcogrammus, Gadidae), while adult fishes were comparatively scarce. The source and fate of these young fishes remain unclear, as sampling in this region is impeded by seasonal ice cover much of the year. Seafloor-mounted echosounders were deployed at three locations in the northeastern Chukchi Sea from 2017 to 2019 to determine the movement and seasonal variability of these age-0 gadids. These observations indicated that the abundance of pelagic fishes and community composition on the Chukchi Sea shelf were highly variable on seasonal time scales, with few fish present in winter. Tracking indicated that fish movements were strongly correlated with local currents. Fishes were primarily displaced to the northeast in summer and fall, with periodic reversals towards the southwest driven by changes in regional wind patterns. The flux of fishes past the moorings indicated that the prevailing northward currents transport a large proportion of the age-0 pelagic fishes present on the Chukchi shelf in summer to the northeast by fall, leading to relatively low abundances of age-1+fishes in this environment.

 
more » « less
NSF-PAR ID:
10398869
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
80
Issue:
4
ISSN:
1054-3139
Page Range / eLocation ID:
p. 987-1001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Barrow Canyon in the northeast Chukchi Sea is a critical choke point where Pacific‐origin water, heat, and nutrients enter the interior Arctic. While the flow through the canyon has been monitored for more than 20 years, questions remain regarding the dynamics by which the Pacific‐origin water is fluxed offshore, as well as what drives the variability. In 2018, two high‐resolution shipboard surveys of the canyon were carried out—one in summer and one in fall—to investigate the water mass distribution and velocity structure of the outflow. During the summer survey, high percentages of Pacific water (summer water + winter water) were present seaward of the canyon, associated with strong northward outflow from the canyon and a well‐developed westward‐flowing Chukchi Slope Current (CSC). By contrast, high percentages of Pacific water were confined to the canyon proper and outer Chukchi shelf during the late‐fall survey, at which time the canyon outflow and CSC were considerably weaker. These differences can be attributed to differences in wind forcing during the time period of two surveys. A cyclone‐like circulation was present in the canyon during both surveys, which was also evident in the satellite‐derived sea surface height anomaly field. We argue that this feature corresponds to an arrested topographic Rossby wave, generated as the outflow responds to the deepening bathymetry of the canyon. By applying a self‐organizing map analysis using the satellite altimeter data from 2001 to 2020, we demonstrate that such a cyclone‐like structure is a prevailing aspect of the canyon outflow.

     
    more » « less
  2. Abstract

    Data from two moorings deployed at 166°W on the northern Chukchi shelf and slope from summer 2002 to fall 2004, as part of the Western Arctic Shelf‐Basin Interactions program, are analyzed to investigate the characteristics and variability of the flow in this region. The depth‐mean velocity at the outer‐shelf mooring is northeastward and bottom‐intensified, while that at the upper‐slope mooring is northwestward and surface‐intensified. This, together with results from a high resolution ocean and sea ice reanalysis, indicates that the outer‐shelf mooring sampled the seaward edge of the Chukchi Shelfbreak Jet, while the upper‐slope mooring sampled the shoreward edge of the Chukchi Slope Current. The coupled variability in velocity at both sites is related to the wind stress curl over the Chukchi Sea shelf, likely via Ekman dynamics and geostrophic set up, analogous to the dynamics of both currents closer to Barrow Canyon near 157°W. Hydrographic signals are analyzed to elucidate the origin of the water masses present at this location. It is argued that the annual appearance of Pacific‐origin warm water at the outer‐shelf (upper‐slope) mooring in late‐fall and winter originates from Herald (Barrow) Canyon some months earlier. Our results constitute the first robust evidence that the westward‐flowing Chukchi Slope Current persists this far west of Barrow Canyon.

     
    more » « less
  3. Secor, David (Ed.)
    Abstract The Northeast US shelf ecosystem is undergoing unprecedented changes due to long-term warming trends and shifts in regional hydrography leading to changes in community composition. However, it remains uncertain how shelf occupancy by the region's dominant, offshore small pelagic fishes, also known as forage fishes, has changed throughout the late 20th and early 21st centuries. Here, we use species distribution models to estimate the change in shelf occupancy, mean weighted latitude, and mean weighted depth of six forage fishes on the Northeast US shelf, and whether those trends were linked to coincident hydrographic conditions. Our results suggest that observed shelf occupancy is increasing or unchanging for most species in both spring and fall, linked both to gear shifts and increasing bottom temperature and salinity. Exceptions include decreases to observed shelf occupancy by sand lance and decreases to Atlantic herring's inferred habitat suitability in the fall. Our work shows that changes in shelf occupancy and inferred habitat suitability have varying coherence, indicating complex mechanisms behind observed shelf occupancy for many species. Future work and management can use these results to better isolate the aspects of forage fish life histories that are important for determining their occupancy of the Northeast US shelf. 
    more » « less
  4. Abstract

    From late‐summer 2013 to late‐summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year‐long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze‐up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one‐dimensional mixed‐layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind‐driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.

     
    more » « less
  5. These data represent the diet composition of small pelagic fishes assessed by the Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) project. The six species of fish in this dataset represent a subset of the species collected in bottom trawls conducted by the NOAA Fisheries Northeast Ecosystems Surveys from Cape Hatteras to the Gulf of Maine. Sampling occurred in the Spring and Fall seasons. Fish were frozen and stomach content analyses were conducted by the Fisheries Oceanography and Larval Fish Ecology Lab at the Woods Hole Oceanographic Institution. Data are counts and length measurements for prey items examined under a dissecting microscope. Prey species were matched to the lowest taxonomic level in the Integrated Taxonomic Information System (ITIS) for scientific name and taxonomic serial number. The dataset was supplemented with geospatial and temporal information from NOAA Fisheries trawl databases. 
    more » « less