Abstract Data from two moorings deployed at 166°W on the northern Chukchi shelf and slope from summer 2002 to fall 2004, as part of the Western Arctic Shelf‐Basin Interactions program, are analyzed to investigate the characteristics and variability of the flow in this region. The depth‐mean velocity at the outer‐shelf mooring is northeastward and bottom‐intensified, while that at the upper‐slope mooring is northwestward and surface‐intensified. This, together with results from a high resolution ocean and sea ice reanalysis, indicates that the outer‐shelf mooring sampled the seaward edge of the Chukchi Shelfbreak Jet, while the upper‐slope mooring sampled the shoreward edge of the Chukchi Slope Current. The coupled variability in velocity at both sites is related to the wind stress curl over the Chukchi Sea shelf, likely via Ekman dynamics and geostrophic set up, analogous to the dynamics of both currents closer to Barrow Canyon near 157°W. Hydrographic signals are analyzed to elucidate the origin of the water masses present at this location. It is argued that the annual appearance of Pacific‐origin warm water at the outer‐shelf (upper‐slope) mooring in late‐fall and winter originates from Herald (Barrow) Canyon some months earlier. Our results constitute the first robust evidence that the westward‐flowing Chukchi Slope Current persists this far west of Barrow Canyon.
more »
« less
Mean and Seasonal Circulation of the Eastern Chukchi Sea From Moored Timeseries in 2013–2014
Abstract From late‐summer 2013 to late‐summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year‐long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze‐up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one‐dimensional mixed‐layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind‐driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.
more »
« less
- PAR ID:
- 10443334
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 126
- Issue:
- 5
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would have come from the east in the absence of the cross‐topography flow in Barrow Canyon. The weak eastward flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow Canyon outflow.more » « less
-
Abstract Recent rapid thinning of West Antarctic ice shelves are believed to be caused by intrusions of warm deep water that induce basal melting and seaward meltwater export. This study uses data from three bottom-mounted mooring arrays to show seasonal variability and local forcing for the currents moving into and out of the Dotson ice shelf cavity. A southward flow of warm, salty water had maximum current velocities along the eastern channel slope, while northward outflows of freshened ice shelf meltwater spread at intermediate depth above the western slope. The inflow correlated with the local ocean surface stress curl. At the western slope, meltwater outflows followed the warm influx along the eastern slope with a ~2–3 month delay. Ocean circulation near Dotson Ice Shelf, affected by sea ice distribution and wind, appears to significantly control the inflow of warm water and subsequent ice shelf melting on seasonal time-scales.more » « less
-
Abstract The Pacific inflow to the Arctic traditionally brings heat in summer, melting sea ice; dense waters in winter, refreshing the Arctic’s cold halocline; and nutrients year‐round, supporting Arctic ecosystems. Bering Strait moorings from 1990 to 2019 find increasing (0.010 ± 0.006 Sv/yr) northward flow, reducing Chukchi residence times by ∼1.5 months over this period (record maximum/minimum ∼7.5 and ∼4.5 months). Annual mean temperatures warm significantly (0.05 ± 0.02°C/yr), with faster change (∼0.1°C/yr) in warming (June/July) and cooling (October/November) months, which are now 2°C to 4°C above climatology. Warm (≥0°C) water duration increased from 5.5 months (the 1990s) to over 7 months (2017), mostly due to earlier warming (1.3 ± 0.7 days/yr). Dramatic winter‐only (January–March) freshening (0.03 psu/yr) makes winter waters fresher than summer waters. The resultant winter density change, too large to be compensated by Chukchi sea‐ice processes, shoals the Pacific Winter Water (PWW) equilibrium depth in the Arctic from 100–150 to 50–100 m, implying PWW no longer ventilates the Arctic’s cold halocline at 33.1 psu.more » « less
-
Abstract Newly ventilated winter water (NVWW) is a cold, salty, nutrient‐rich water mass that is critical for supporting the ecosystem of the western Arctic Ocean and for ventilating the halocline in the Canada Basin. While the formation of NVWW is well‐documented on the Chukchi shelf, there remain fundamental questions regarding its formation on the western Beaufort shelf. In this study, we use hydrographic data from two late‐fall cruises in 2018 and 2022 to investigate the roles of sea ice production and wind‐driven upwelling in the formation of NVWW and the implications for the nutrient content of the water. For each of the shipboard transects, we apply proxies for the extent of the winter water formation and the strength of the associated upwelling, respectively. It is demonstrated that the NVWW attains higher levels of nitrate due to two factors: (a) more active formation of the water associated with enhanced sea ice production and (b) more extensive upwelling of water high in nutrients from the basin to the shelf following an easterly wind event. The latter process would be less common on the wide Chukchi shelf. These findings have significant implications for the regional primary production.more » « less