Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.
more »
« less
On the Role of Theory and Modeling in Neuroscience
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.
more »
« less
- PAR ID:
- 10398889
- Date Published:
- Journal Name:
- The Journal of Neuroscience
- Volume:
- 43
- Issue:
- 7
- ISSN:
- 0270-6474
- Page Range / eLocation ID:
- 1074 to 1088
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This double interview with two distinguished researchers in computational neuroscience, Kanaka Rajan and Alessandro Treves, aims to capture a part of their talks and discussions that emerged during a workshop on physical modelling of thought, held in Berlin in January 2023. The topic is the fascinating all-round intersection of physics and neuroscience through the perspectives of the interviewees. The dialogue traverses the complex terrain of modelling thought processes, shedding light on the trade-off between simplicity and complexity that defines the field of computational neuroscience. From the early days of physics-inspired brain models to the cutting-edge advancements in large language models, the interviewees share their journey, challenges, and insights into the modelling of physical and biological systems; they recount their experience with computational neuroscience, explore the impact of large language models on our understanding of human language and cognition, and speculate on the future directions of physics-inspired computational neuroscience, emphasising the importance of interdisciplinary collaboration and a deeper integration of complexity and detail in modelling the brain and its functions.more » « less
-
Landmark universal function approximation results for neural networks with trained weights and biases provided the impetus for the ubiquitous use of neural networks as learning models in neuroscience and Artificial Intelligence (AI). Recent work has extended these results to networks in which a smaller subset of weights (e.g., output weights) are tuned, leaving other parameters random. However, it remains an open question whether universal approximation holds when only biases are learned, despite evidence from neuroscience and AI that biases significantly shape neural responses. The current paper answers this question. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can approximate any continuous function on compact sets. We further show an analogous result for the approximation of dynamical systems with recurrent neural networks. Our findings are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on recent fine-tuning methods for large language models, like bias and prefix-based approaches.more » « less
-
Amodio argues that social cognition research has for many decades relied on imprecise dual-process models that build on questionable assumptions about how people learn and represent information. He presents an alternative framework for explaining social behavior as the product of multiple dissociable memory systems, based on the idea that cognitive neuroscience has revealed evidence for the existence of separate systems underlying distinct forms of learning and memory. Although we applaud Amodio’s attempt to build bridges between social cognition, learning psychology, and neuroscience, we believe that his interactive memory systems model rests on shaky grounds. In our view, the most significant limitation is the idea that behavioral dissociations provide strong evidence for multiple memory systems with functionally distinct learning mechanisms. A major problem with this idea is that behavioral dissociations can arise from processes during the retrieval and use of stored information, which does not require any assumptions about distinct memory systems or distinct forms of learning.more » « less
-
null (Ed.)Abstract Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual’s social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.more » « less
An official website of the United States government

