skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advanced supramolecular design for direct ink writing of soft materials
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host–guest inclusion, metal–ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.  more » « less
Award ID(s):
1757371
PAR ID:
10399035
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Society Reviews
ISSN:
0306-0012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. 
    more » « less
  2. Embedded ink writing (EIW) and direct ink writing (DIW) constitute the primary strategies for three-dimensional (3D) printing within the realm of material extrusion. These methods enable the rapid fabrication of complex 3D structures, utilizing either yield-stress support baths or self-supporting inks. Both these strategies have been extensively studied across a range of fields, including biomedical, soft robotics, and smart sensors, due to their outstanding print fidelity and compatibility with diverse ink materials. Particle additives capable of forming volume-filling 3D networks are frequently incorporated into polymer solvents. This integration is crucial for engineering the requisite microstructures essential for the formulation of successful support bath and ink materials. The interplay between the particle additives and polymer solvents is critical for achieving rheological tunability in various 3D printing strategies, yet this area has not been systematically reviewed. Therefore, in this critical review, we examined various mechanisms of particle–polymer interactions, the resulting microstructures, and their subsequent impact on mechanical and rheological properties. Overall, this work aims to serve as a foundational guideline for the design of next-generation materials in the field of extrusion additive manufacturing, specifically for EIW and DIW. 
    more » « less
  3. Graphene oxide (GO) has attracted attention in materials science and engineering due to its large aspect ratio and dispersibility in polar solvent including water. It has recently been applied to direct-ink-writing (DIW) printing to realize the fabrication of three-dimensional structures, suggesting a wide variety of potential applications. Without post-processing, DIW printing requires yield stress fluids to fully build three-dimensional objects. The key properties of these inks are the yield stress and the viscoelastic properties during yielding. DIW ink rheology has therefore received significant interest in materials science, as well as mechanical and chemical engineering. Despite this interest, the yielding process has not been clearly elucidated and understanding yielding remains an outstanding problem. In this study, we discuss the yielding behavior of GO colloids via oscillatory rheology by decomposing the total strain into the recoverable and unrecoverable parts through iterative experimental techniques. The recoverable and unrecoverable responses represent viscoelastic solid and plastic properties, respectively, and they are used to determine the averaged storage and dissipation of energies. By mapping these contributions, we more clearly elucidate the yielding behavior of the GO colloids and suggest guidelines for energy efficiency. Beyond the specific lessons learned regarding the DIW-relevant rheology of GO colloids, our study contributes to an evolving development of material-centric and energy-focused methods for understanding the out-of-equilibrium rheological physics associated with the yielding of soft materials. 
    more » « less
  4. The rapid development of additive manufacturing, also known as three-dimensional (3D) printing, is driving innovations in both industry and academia. Direct ink writing (DIW), an extrusion-based 3D printing technology, can build 3D structures through the deposition of custom-made inks and produce devices with complex architectures, excellent mechanical properties, and enhanced functionalities. A paste-like ink is the key to successful printing. However, as new ink compositions have emerged, the rheological requirements of inks have not been well connected to printability, or the ability of a printed object to maintain its shape and support the weight of subsequent layers. In this review, we provide an overview of the rheological properties of successful DIW inks and propose a classification system based on ink composition. Factors influencing the rheology of different types of ink are discussed, and we propose a framework for describing ink printability using measures of rheology and print resolution. Furthermore, evolving techniques, including computational studies, high-throughput rheological measurements, machine learning, and materiomics, are discussed to illustrate the future directions of feedstock development for DIW. The goals of this review are to assess our current understanding of the relationship between rheological properties and printability, to point out specific challenges and opportunities for development, to provide guidelines to those interested in multi-material DIW, and to pave the way for more efficient, intelligent approaches for DIW ink development. 
    more » « less
  5. Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed. 
    more » « less