skip to main content


Title: Equations of Motion Near Cyclotron Resonance
This work compares several versions of the equations of motion for a test particle encountering cyclotron resonance with a single, field-aligned whistler mode wave. The gyro-averaged Lorentz equation produces both widespread phase trapping (PT) and “positive phase bunching” of low pitch angle electrons by large amplitude waves. Approximations allow a Hamiltonian description to be reduced to a single pair of conjugate variables, which can account for PT as well as phase bunching at moderate pitch angle, and has recently been used to investigate this unexpected bahavior at low pitch angle. Here, numerical simulations using the Lorentz equation and several versions of Hamiltonian-based equations of motion are compared. Similar behavior at low pitch angle is found in each case.  more » « less
Award ID(s):
1847818
NSF-PAR ID:
10399057
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into a map in the energy/pitch-angle space. The main advances of this approach are the possibility of considering effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization. 
    more » « less
  2. Radiation belt electrons are strongly affected by resonant interactions with cyclotron-resonant waves. In the case of a particle passing through resonance with a single, coherent wave, a Hamiltonian formulation is advantageous. With certain approximations, the Hamiltonian has the same form as that for a plane pendulum, leading to estimates of the change at resonance of the first adiabatic invariant I , energy, and pitch angle. In the case of large wave amplitude (relative to the spatial variation of the background magnetic field), the resonant change in I and its conjugate phase angle ξ are not diffusive but determined by nonlinear dynamics. A general analytical treatment of slow separatrix crossing has long been available and can be used to give the changes in I associated with “phase bunching,” including the detailed dependence on ξ , in the nonlinear regime. Here we review this treatment, evaluate it numerically, and relate it to previous analytical results for nonlinear wave-particle interactions. “Positive phase bunching” can occur for some particles even in the pendulum Hamiltonian approximation, though the fraction of such particles may be exponentially small. 
    more » « less
  3. Abstract

    Radiation belt electrons are strongly affected by resonant interactions with cyclotron‐resonant waves. For broad band, small amplitude waves the interactions are well described by quasi‐linear diffusion in pitch angle and energy, but coherent, large amplitude waves such as strong whistler mode chorus call for a different treatment. The standard nonlinear framework reduces the problem to that of a classical pendulum. This picture has generally been confirmed by many numerical simulations, but recent studies have uncovered additional, complex behavior, not captured by the pendulum model, for particles with low pitch angle. We show that avoiding a commonly made approximation leads to a more general but still tractable “second fundamental model” Hamiltonian, which involves not one but two regions of phase trapping. We analyze its phase portraits in detail, and perform representative test particle simulations with slowly changing parameters. We find that the trajectories encompass traditional phase bunching and phase trapping as well as additional behavior best understood using the new model.

     
    more » « less
  4. Abstract

    Electrons with energies ≥40 keV can be found at low density in many different regions of Earth's magnetosphere. A litany of fundamental questions in space physics have focused on the acceleration mechanism of these particles, given that the sources of plasma are the relatively cool ionosphere and solar wind (∼1–100s eV). Upgraded global solar wind‐magnetosphere simulations which can resolve mesoscale dynamics have the ability to enhance our understanding of these high energy particles. This is because the energization of particles often takes the form of a sequence of discrete steps, potentially occurring in different regions of the magnetosphere and due to both meso‐ and global‐scale processes. First, brief results are presented from the Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation on the structure of the cusp diamagnetic cavity for northward and southward IMF. Then, the Conservative Hamiltonian Integrator for Magnetospheric Particles (CHIMP) framework, with both guiding center and full Lorentz integrators, evolves necessary parameters such as the energy and pitch angle of electron test particles to investigate particle acceleration inside the cavity, as well as the ultimate fate of electrons accelerated inside the cavity. The simulation shows that particles can gain ≥ 10 keV inside the cavity and subsequently leak into the magnetosheath or onto dipolar field lines where they execute different types of bounce motion. The distribution of test particles initialized inside the cavity is compared with Magnetospheric Multi‐Scale (MMS) observations.

     
    more » « less
  5. Abstract

    We use test particle simulations to model the interaction between radiation belt electrons and whistler mode chorus waves by focusing on wave amplitude modulations. We quantify the pitch angle and energy changes due to phase trapping and phase bunching (including both advection and scattering) for electrons with various initial energies and pitch angles. Three nonlinear regimes are identified in a broad range of pitch angle‐energy space systematically, each indicating different nonlinear effects. Our simulation results show that wave amplitude modulations can extend the nonlinear regimes, while significantly reducing electron acceleration by phase trapping. By including amplitude modulations, the “advective” changes in pitch angle and energy caused by phase bunching are reduced, while the “diffusive” scattering due to phase bunching is enhanced. Our study demonstrates the importance of wave amplitude modulations in nonlinear effects and suggests that they need to be properly incorporated into future theoretical and numerical studies.

     
    more » « less