Cosmological moduli generically come to dominate the energy density of the early universe, and thereby trigger an early matter dominated era. Such non-standard cosmological histories are expected to have profound effects on the evolution and production of axion cold dark matter and dark radiation, as well as their prospects for detection. We consider moduli-axion couplings and investigate the early history of the coupled system, considering closely the evolution of the homogeneous modulus field, the back-reaction from the axion, and the energy densities of the two fields. A particular point of interest is the enhancement of axion production from modulus decay, due to tachyonic and parametric resonant instabilities, and the implications of such production on the cosmological moduli problem, axion dark radiation, and the available parameter space for axion dark matter. Using an effective field theory approach, WKB-based semi-analytical analysis, and detailed numerical estimates of the co-evolution of the system, we evaluate the expected decay efficiency of the modulus to axions. The effects of higher-order operators are studied and implications for UV-complete frameworks such as the Large Volume Scenarios in Type IIB string theory are considered in detail.
more »
« less
Long-term dynamics driven by resonant wave–particle interactions: from Hamiltonian resonance theory to phase space mapping
In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into a map in the energy/pitch-angle space. The main advances of this approach are the possibility of considering effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization.
more »
« less
- Award ID(s):
- 2021749
- PAR ID:
- 10315806
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 87
- Issue:
- 2
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reversing the effects of a quantum evolution, for example, as is done in error correction, is an important task for controlling quantum systems in order to produce reliable quantum devices. When the evolution is governed by a completely positive map, there exist reversibility conditions, known as the quantum error correcting code conditions, which are necessary and sufficient conditions for the reversibility of a quantum operation on a subspace, the code space. However, if we suppose that the evolution is not described by a completely positive map, necessary and sufficient conditions are not known. Here we consider evolutions that do not necessarily correspond to a completely positive map. We prove that the completely positive map error correcting code conditions can lead to a code space that is not in the domain of the map, meaning that the output of the map is not positive. A corollary to our theorem provides a class of relevant examples. Finally, we provide a set of sufficient conditions that will enable the use of quantum error correcting code conditions while ensuring positivity.more » « less
-
null (Ed.)Abstract This paper considers the dynamic response of a single degree of freedom system with nonlinear stiffness and nonlinear damping that is subjected to both resonant direct excitation and resonant parametric excitation, with a general phase between the two. This generalizes and expands on previous studies of nonlinear effects on parametric amplification, notably by including the effects of nonlinear damping, which is commonly observed in a large variety of systems, including micro- and nano-scale resonators. Using the method of averaging, a thorough parameter study is carried out that describes the effects of the amplitudes and relative phase of the two forms of excitation. The effects of nonlinear damping on the parametric gain are first derived. The transitions among various topological forms of the frequency response curves, which can include isolae, dual peaks, and loops, are determined, and bifurcation analyses in parameter spaces of interest are carried out. In general, these results provide a complete picture of the system response and allow one to select drive conditions of interest that avoid bistability while providing maximum amplitude gain, maximum phase sensitivity, or a flat resonant peak, in systems with nonlinear damping.more » « less
-
null (Ed.)Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.more » « less
-
The accuracy of quasilinear theory applied to the electron bump-on-tail instability, a classic model problem, is explored with conservative high-order discontinuous Galerkin methods applied to both the quasilinear equations and to a direct simulation of the Vlasov–Poisson equations. The initial condition is chosen in the regime of beam parameters for which quasilinear theory should be applicable. Quasilinear diffusion is initially in good agreement with the direct simulation but later underestimates the turbulent momentum flux. The greater turbulent flux of the direct simulation leads to a correction from quasilinear evolution by quenching the instability in a finite time. Flux enhancement above quasilinear levels occurs as the phase space eddy turnover time in the largest amplitude wavepackets becomes comparable to the transit time of resonant phase fluid through wavepacket potentials. In this regime, eddies effectively turn over during wavepacket transit so that phase fluid predominantly disperses by eddy phase mixing rather than by randomly phased waves. The enhanced turbulent flux of resonant phase fluid leads, in turn, through energy conservation to an increase in non-resonant turbulent flux and, thus, to an enhanced heating of the main thermal body above quasilinear predictions. These findings shed light on the kinetic turbulence fluctuation spectrum and support the theory that collisionless momentum diffusion beyond the quasilinear approximation can be understood through the dynamics of phase space eddies (or clumps and granulations).more » « less
An official website of the United States government

