skip to main content

Title: Long-term dynamics driven by resonant wave–particle interactions: from Hamiltonian resonance theory to phase space mapping
In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into a map in the energy/pitch-angle space. The main advances of this approach are the possibility of considering effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization.
Authors:
; ; ; ; ;
Award ID(s):
2021749
Publication Date:
NSF-PAR ID:
10315806
Journal Name:
Journal of Plasma Physics
Volume:
87
Issue:
2
ISSN:
0022-3778
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reversing the effects of a quantum evolution, for example, as is done in error correction, is an important task for controlling quantum systems in order to produce reliable quantum devices. When the evolution is governed by a completely positive map, there exist reversibility conditions, known as the quantum error correcting code conditions, which are necessary and sufficient conditions for the reversibility of a quantum operation on a subspace, the code space. However, if we suppose that the evolution is not described by a completely positive map, necessary and sufficient conditions are not known. Here we consider evolutions that do not necessarily correspond to a completely positive map. We prove that the completely positive map error correcting code conditions can lead to a code space that is not in the domain of the map, meaning that the output of the map is not positive. A corollary to our theorem provides a class of relevant examples. Finally, we provide a set of sufficient conditions that will enable the use of quantum error correcting code conditions while ensuring positivity.
  2. Abstract

    Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking, precision spectroscopy and time-frequency standards. The dynamics for the dissipative soliton generation, however, are intrinsically intertwined with thermal nonlinearities, limiting the soliton generation parameter map and statistical success probabilities of the solitary state. Here, via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation, we demonstrate stable Kerr soliton singlet formation and soliton bursts. First, we access a new soliton existence range with an inverse-sloped Kerr soliton evolution—diminishing soliton energy with increasing pump detuning. Second, we achieve deterministic transitions from Turing-like comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states. This is achieved by avoiding subcomb overlaps at lower pump power, with near-identical singlet soliton comb generation over twenty instances. Third, with the red-detuned pump entrance route enabled, we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise. The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode, aided by the auxiliary laser and matching well with our numerical simulations. Enabled by themore »auxiliary-assisted frequency comb dynamics, we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations. Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.

    « less
  3. Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.
  4. Abstract We consider a collection of Markov chains that model the evolution of multitype biological populations. The state space of the chains is the positive orthant, and the boundary of the orthant is the absorbing state for the Markov chain and represents the extinction states of different population types. We are interested in the long-term behavior of the Markov chain away from extinction, under a small noise scaling. Under this scaling, the trajectory of the Markov process over any compact interval converges in distribution to the solution of an ordinary differential equation (ODE) evolving in the positive orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in this scaling regime. Our main result shows that, under conditions, the limit points of the QSD are supported on the union of interior attractors of the flow determined by the ODE. We also give lower bounds on expected extinction times which scale exponentially with the system size. Results of this type when the deterministic dynamical system obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics are essentially in a compact space (namely, the one-step map is a bounded function) have been studied by Faure andmore »Schreiber (2014). Our results extend these to a setting of an unbounded state space and continuous-time dynamics. The proofs rely on uniform large deviation results for small noise stochastic dynamical systems and methods from the theory of continuous-time dynamical systems. In general, QSD for Markov chains with absorbing states and unbounded state spaces may not exist. We study one basic family of binomial-Poisson models in the positive orthant where one can use Lyapunov function methods to establish existence of QSD and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The results from the first part are then used to characterize the support of limit points of this sequence of QSD.« less
  5. Abstract

    Intensity modulators are an essential component in optics for controlling free-space beams. Many applications require the intensity of a free-space beam to be modulated at a single frequency, including wide-field lock-in detection for sensitive measurements, mode-locking in lasers, and phase-shift time-of-flight imaging (LiDAR). Here, we report a new type of single frequency intensity modulator that we refer to as a longitudinal piezoelectric resonant photoelastic modulator. The modulator consists of a thin lithium niobate wafer coated with transparent surface electrodes. One of the fundamental acoustic modes of the modulator is excited through the surface electrodes, confining an acoustic standing wave to the electrode region. The modulator is placed between optical polarizers; light propagating through the modulator and polarizers is intensity modulated with a wide acceptance angle and record breaking modulation efficiency in the megahertz frequency regime. As an illustration of the potential of our approach, we show that the proposed modulator can be integrated with a standard image sensor to effectively convert it into a time-of-flight imaging system.