skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeepHardMark: Towards Watermarking Neural Network Hardware
This paper presents a framework for embedding watermarks into DNN hardware accelerators. Unlike previous works that have looked at protecting the algorithmic intellectual properties of deep learning systems, this work proposes a methodology for defending deep learning hardware. Our methodology embeds modifications into the hardware accelerator's functional blocks that can be revealed with the rightful owner's key DNN and corresponding key sample, verifying the legitimate owner. We propose an Lp-box ADMM based algorithm to co-optimize watermark's hardware overhead and impact on the design's algorithmic functionality. We evaluate the performance of the hardware watermarking scheme on popular image classifier models using various accelerator designs. Our results demonstrate that the proposed methodology effectively embeds watermarks while preserving the original functionality of the hardware architecture. Specifically, we can successfully embed watermarks into the deep learning hardware and reliably execute a ResNet ImageNet classifiers with an accuracy degradation of only 0.009%  more » « less
Award ID(s):
2047384
PAR ID:
10399096
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
4
ISSN:
2159-5399
Page Range / eLocation ID:
4450 to 4458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning is being incorporated in many modern software systems. Deep learning approaches train a deep neural network (DNN) model using training examples, and then use the DNN model for prediction. While the structure of a DNN model as layers is observable, the model is treated in its entirety as a monolithic component. To change the logic implemented by the model, e.g. to add/remove logic that recognizes inputs belonging to a certain class, or to replace the logic with an alternative, the training examples need to be changed and the DNN needs to be retrained using the new set of examples. We argue that decomposing a DNN into DNN modules-akin to decomposing a monolithic software code into modules-can bring the benefits of modularity to deep learning. In this work, we develop a methodology for decomposing DNNs for multi-class problems into DNN modules. For four canonical problems, namely MNIST, EMNIST, FMNIST, and KMNIST, we demonstrate that such decomposition enables reuse of DNN modules to create different DNNs, enables replacement of one DNN module in a DNN with another without needing to retrain. The DNN models formed by composing DNN modules are at least as good as traditional monolithic DNNs in terms of test accuracy for our problems. 
    more » « less
  2. With the rising adoption of deep neural networks (DNNs) for commercial and high-stakes applications that process sensitive user data and make critical decisions, security concerns are paramount. An adversary can undermine the confidentiality of user input or a DNN model, mislead a DNN to make wrong predictions, or even render a machine learning application unavailable to valid requests. While security vulnerabilities that enable such exploits can exist across multiple levels of the technology stack that supports machine learning applications, the hardware-level vulnerabilities can be particularly problematic. In this article, we provide a comprehensive review of the hardware-level vulnerabilities affecting domain-specific DNN inference accelerators and recent progress in secure hardware design to address these. As domain-specific DNN accelerators have a number of differences compared to general-purpose processors and cryptographic accelerators where the hardware-level vulnerabilities have been thoroughly investigated, there are unique challenges and opportunities for secure machine learning hardware. We first categorize the hardware-level vulnerabilities into three scenarios based on an adversary’s capability: 1) an adversary can only attack the off-chip components, such as the off-chip DRAM and the data bus; 2) an adversary can directly attack the on-chip structures in a DNN accelerator; and 3) an adversary can insert hardware trojans during the manufacturing and design process. For each category, we survey recent studies on attacks that pose practical security challenges to DNN accelerators. Then, we present recent advances in the defense solutions for DNN accelerators, addressing those security challenges with circuit-, architecture-, and algorithm-level techniques. 
    more » « less
  3. Deep learning that utilizes large-scale deep neural networks (DNNs) is effective in automatic high-level feature extraction but also computation and memory intensive. Constructing DNNs using block-circulant matrices can simultaneously achieve hardware acceleration and model compression while maintaining high accuracy. This paper proposes HSIM-DNN, an accurate hardware simulator on the C++ platform, to simulate the exact behavior of DNN hardware implementations and thereby facilitate the block-circulant matrix-based design of DNN training and inference procedures in hardware. Real FPGA implementations validate the simulator with various circulant block sizes and data bit lengths taking into account accuracy, compression ratio and power consumption, which provides excellent insights for hardware design. 
    more » « less
  4. Deep neural networks (DNNs) emerge as a key component in various applications. However, the ever-growing DNN size hinders efficient processing on hardware. To tackle this problem, on the algorithmic side, compressed DNN models are explored, of which block-circulant DNN models are memory efficient and hardware-friendly; on the hardware side, resistive random-access memory (ReRAM) based accelerators are promising for in-situ processing of DNNs. In this work, we design an accelerator named ReBoc for accelerating block-circulant DNNs in ReRAM to reap the benefits of light-weight models and efficient in-situ processing simultaneously. We propose a novel mapping scheme which utilizes Horizontal Weight Slicing and Intra-Crossbar Weight Duplication to map block-circulant DNN models onto ReRAM crossbars with significant improved crossbar utilization. Moreover, two specific techniques, namely Input Slice Reusing and Input Tile Sharing are introduced to take advantage of the circulant calculation feature in block- circulant DNNs to reduce data access and buffer size. In REBOC, a DNN model is executed within an intra-layer processing pipeline and achieves respectively 96× and 8.86× power efficiency improvement compared to the state-of-the-art FPGA and ASIC accelerators for block-circulant neural networks. Compared to ReRAM-based DNN accelerators, REBOC achieves averagely 4.1× speedup and 2.6× energy reduction. 
    more » « less
  5. null (Ed.)
    Security of machine learning is increasingly becoming a major concern due to the ubiquitous deployment of deep learning in many security-sensitive domains. Many prior studies have shown external attacks such as adversarial examples that tamper the integrity of DNNs using maliciously crafted inputs. However, the security implication of internal threats (i.e., hardware vulnerabilities) to DNN models has not yet been well understood. In this paper, we demonstrate the first hardware-based attack on quantized deep neural networks–DeepHammer–that deterministically induces bit flips in model weights to compromise DNN inference by exploiting the rowhammer vulnerability. DeepHammer performs an aggressive bit search in the DNN model to identify the most vulnerable weight bits that are flippable under system constraints. To trigger deterministic bit flips across multiple pages within a reasonable amount of time, we develop novel system-level techniques that enable fast deployment of victim pages, memory-efficient rowhammering and precise flipping of targeted bits. DeepHammer can deliberately degrade the inference accuracy of the victim DNN system to a level that is only as good as random guess, thus completely depleting the intelligence of targeted DNN systems. We systematically demonstrate our attacks on real systems against 11 DNN architectures with 4 datasets corresponding to different application domains. Our evaluation shows that DeepHammer is able to successfully tamper DNN inference behavior at run-time within a few minutes. We further discuss several mitigation techniques from both algorithm and system levels to protect DNNs against such attacks. Our work highlights the need to incorporate security mechanisms in future deep learning systems to enhance the robustness against hardware-based deterministic fault injections. 
    more » « less