skip to main content


Title: A Computational Analysis of Bubble-Structure Interaction in Near-Field Underwater Explosion
Underwater explosion poses a significant threat to the structural integrity of ocean vehicles and platforms. Accurate prediction of the dynamic loads from an explosion and the resulting structural response is crucial to ensuring safety without overconservative design. When the distance between the explosive charge and the structure is relatively small (i.e., near-field explosion), the dynamics of the gaseous explosion product, i.e., the “bubble”, comes into play, rendering a multiphysics problem that features the interaction of the bubble, the surrounding liquid water, and the solid structure. The problem is highly nonlinear, as it involves shock waves, large deformation, yielding, contact, and possibly fracture. This paper investigates the two-way interaction between the cyclic expansion and collapse of an explosion bubble and the deformation of a thin-walled elastoplastic cylindrical shell in its vicinity. Intuitively, when a shock wave impinges on a thin cylindrical shell, the shell would collapse in the direction of shock propagation. However, some recent laboratory experiments have shown that under certain conditions the shell collapsed in a counter-intuitive mode in which the direction of collapse is perpendicular to that of shock propagation. In other words, the nearest point on the structural surface moved towards the explosion charge, despite being impacted by a compressive shock. This paper focuses on replicating this phenomenon through numerical simulation and elucidating the underlying mechanisms. A recently developed computational framework (“FIVER”) coupling a nonlinear finite element structural dynamics solver and a finite volume compressible fluid dynamics solver is used to complete this study. The solver utilizes an embedded boundary method to track the wetted surface of the structure (i.e. the fluid-structure interface), which is capable of handling large structural deformation and topological changes (e.g., fracture). The solver also adopts the level set method for tracking the bubble surface (i.e. the liquid-gas interface). The fluid-structure and liquid-gas interface conditions are enforced by constructing and solving one-dimensional multi-material Riemann problems, which naturally accommodates the propagation of shock waves across the interfaces. In this paper, mesh refinement study is made to examine the sensitivity of the results to various meshing parameters. The results show that the intermediate level of refinement is appropriate in terms of both the accuracy and the computation costs. Next, the deformation history of both the bubble and the structure are presented and analyzed to provide a detailed view of the counter-intuitive collapse mode mentioned above. We show that timewise, the structural collapse spans multiple cycles of bubble oscillation. Additional details about the time-histories of fluid pressure, structure displacement, and bubble size are presented to elucidate this dynamic bubble-structure interaction and the resulting structural failure.  more » « less
Award ID(s):
1751487
NSF-PAR ID:
10399103
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of ASME 2021 International Mechanical Engineering Congress and Exposition
Volume:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract

    Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with a nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of the structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion.

     
    more » « less
  2. null (Ed.)
    The fluid dynamics of a bubble collapsing near an elastic or viscoelastic material is coupled with the mechanical response of the material. We apply a multiphase fluid–solid coupled computational model to simulate the collapse of an air bubble in water induced by an ultrasound shock wave, near different types of materials including metals (e.g. aluminium), polymers (e.g. polyurea), minerals (e.g. gypsum), glass and foams. We characterize the two-way fluid–material interaction by examining the fluid pressure and velocity fields, the time history of bubble shape and volume and the maximum tensile and shear stresses produced in the material. We show that the ratio of the longitudinal acoustic impedance of the material compared to that of the ambient fluid, $Z/Z_0$ , plays a significant role. When $Z/Z_0<1$ , the material reflects the compressive front of the incident shock into a tensile wave. The reflected tensile wave impinges on the bubble and decelerates its collapse. As a result, the collapse produces a liquid jet, but not necessarily a shock wave. When $Z/Z_0>1$ , the reflected wave is compressive and accelerates the bubble's collapse, leading to the emission of a shock wave whose amplitude increases linearly with $\log (Z/Z_0)$ , and can be much higher than the amplitude of the incident shock. The reflection of this emitted shock wave impinges on the bubble during its rebound. It reduces the speed of the bubble's rebound and the velocity of the liquid jet. Furthermore, we show that, for a set of materials with $Z/Z_0\in [0.04, 10.8]$ , the effect of acoustic impedance on the bubble's collapse time and minimum volume can be captured using phenomenological models constructed based on the solution of Rayleigh–Plesset equation. 
    more » « less
  3. Abstract This paper reports the development of a numerical solver aimed to simulate the interaction between the space charge (i.e. ions) distribution and the electric field in liquid argon time projection chamber (LArTPC) detectors. The ion transport equation is solved by a time-accurate, cell-centered finite volume method and the electric potential equation by a continuous finite element method. The electric potential equation updates the electric field which provides the drift velocity to the ion transport equation. The ion transport equation updates the space charge density distribution which appears as the source term in the electric potential equation. The interaction between the space charge distribution and the electric field is numerically simulated within each physical time step. The convective velocity in the ion transport equation can include the background flow velocity in addition to the electric drift velocity. The numerical solver has been parallelized using the Message Passing Interface (MPI) library. Numerical tests show and verify the capability and accuracy of the current numerical solver. It is planned that the developed numerical solver, together with a Computational Fluid Dynamics (CFD) package which provides the flow velocity field, can be used to investigate the space charge effect on the electric field in large-scale particle detectors. 
    more » « less
  4. Abstract Initially classified as a Type Ib supernova (SN), ∼100 days after the explosion SN 2014C made a transition to a Type II SN, presenting a gradual increase in the H α emission. This has been interpreted as evidence of interaction between the SN shock wave and a massive shell previously ejected from the progenitor star. In this paper we present numerical simulations of the propagation of the SN shock through the progenitor star and its wind, as well as the interaction of the SN ejecta with the massive shell. To determine with high precision the structure and location of the shell, we couple a genetic algorithm to a hydrodynamic and a bremsstrahlung radiation transfer code. We iteratively modify the density stratification and location of the shell by minimizing the variance between X-ray observations and synthetic predictions computed from the numerical model, allowing the shell structure to be completely arbitrary. By assuming spherical symmetry, we found that our best-fit model has a shell mass of 2.6 M ⊙ ; extends from 1.6 × 10 16 cm to 1.87 × 10 17 cm, implying that it was ejected ∼ 60/( v w /100 km s −1 ) yr before the SN explosion; and has a density stratification with an average behavior ∼ r −3 but presenting density fluctuations larger than one order of magnitude. Finally, we predict that if the density stratification follows the same power-law behavior, the SN will break out from the shell by mid-2022, i.e., 8.5 yr after explosion. 
    more » « less
  5. Flapping, flexible insect wings deform under inertial and fluid loading. Deformation influences aerodynamic force generation and sensorimotor control, and is thus important to insect flight mechanics. Conventional flapping wing fluid–structure interaction models provide detailed information about wing deformation and the surrounding flow structure, but are impractical in parameter studies due to their considerable computational demands. Here, we develop two quasi three-dimensional reduced-order models (ROMs) capable of describing the propulsive forces/moments and deformation profiles of flexible wings. The first is based on deformable blade element theory (DBET) and the second is based on the unsteady vortex lattice method (UVLM). Both rely on a modal-truncation based structural solver. We apply each model to estimate the aeromechanics of a thin, flapping flat plate with a rigid leading edge, and compare ROM findings to those produced by a coupled fluid dynamics/finite element computational solver. The ROMs predict wing deformation with good accuracy even for relatively large deformations of 25% of the chord length. Aerodynamic loading normal to the wing's rotation plane is well captured by the ROMs, though model errors are larger for in-plane loading. We then perform a parameter sweep to understand how wing flexibility and mass affect peak deflection, mean lift and average power. All models indicate that flexible wings produce less lift but require lower average power to flap. Importantly, these studies highlight the computational efficiency of the ROMs—compared to the convention modeling approach, the UVLM and DBET ROMs solve 4 and 6 orders of magnitude faster, respectively.

     
    more » « less