Temperature variations in low permeable soil (e.g. clay) induce pore pressure, which is known as thermal pressurization. Previous research showed that thermal pressurization highly depends on thermal pressurization coefficient. This coefficient depends on the soil type and changes with temperature due to temperature dependency of thermal expansion coefficient of water. Thermal pressurization is often investigated through thermo-hydro-mechanical (THM) numerical modeling. THM process, with respect to thermal loading, has been examined in the literature to justify the field observations by incorporating advanced thermo-mechanical constitutive models. However, result of numerical simulations using advanced thermo-elastoplastic models still show some discrepancies with experimental and field observations. In this study, the assessment of thermal pressurization in Boom clay is scrutinized through employing a relatively simple while practical thermo-poroelastic finite element model with careful consideration of the temperature-dependent thermal, hydraulic, and mechanical properties of the medium and saturating fluid (i.e. water). The numerical model is carried out using COMSOL Multiphysics and the results of the numerical simulations are compared and validated with the ATLAS project, a large-scale experimental facility in Belgium. The results confirm that thermal and hydraulic coupling parameters are the key factors to change thermal pressurization.
more »
« less
A Thermo‐Flow‐Mechanics‐Fracture Model Coupling a Phase‐Field Interface Approach and Thermo‐Fluid‐Structure Interaction
ABSTRACT This work proposes a novel approach for coupling non‐isothermal fluid dynamics with fracture mechanics to capture thermal effects within fluid‐filled fractures accurately. This method addresses critical aspects of calculating fracture width in enhanced geothermal systems, where the temperature effects of fractures are crucial. The proposed algorithm features an iterative coupling between an interface‐capturing phase‐field fracture method and interface‐tracking thermo‐fluid‐structure interaction using arbitrary Lagrangian–Eulerian coordinates. We use a phase‐field approach to represent fractures and reconstruct the geometry to frame a thermo‐fluid‐structure interaction problem, resulting in pressure and temperature fields that drive fracture propagation. We developed a novel phase‐field interface model accounting for thermal effects, enabling the coupling of quantities specific to the fluid‐filled fracture with the phase‐field model through the interface between the fracture and the intact solid domain. We provide several numerical examples to demonstrate the capabilities of the proposed algorithm. In particular, we analyze mesh convergence of our phase‐field interface model, investigate the effects of temperature on crack width and volume in a static regime, and highlight the method's potential for modeling slowly propagating fractures.
more »
« less
- Award ID(s):
- 2208402
- PAR ID:
- 10571199
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 126
- Issue:
- 1
- ISSN:
- 0029-5981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many geo‐engineering applications, for example, enhanced geothermal systems, rely on hydraulic fracturing to enhance the permeability of natural formations and allow for sufficient fluid circulation. Over the past few decades, the phase‐field method has grown in popularity as a valid approach to modeling hydraulic fracturing because of the ease of handling complex fracture propagation geometries. However, existing phase‐field methods cannot appropriately capture nucleation of hydraulic fractures because their formulations are solely energy‐based and do not explicitly take into account the strength of the material. Thus, in this work, we propose a novel phase‐field formulation for hydraulic fracturing with the main goal of modeling fracture nucleation in porous media, for example, rocks. Built on the variational formulation of previous phase‐field methods, the proposed model incorporates the material strength envelope for hydraulic fracture nucleation through two important steps: (i) an external driving force term, included in the damage evolution equation, that accounts for the material strength; (ii) a properly designed damage function that defines the fluid pressure contribution on the crack driving force. The comparison of numerical results for two‐dimensional test cases with existing analytical solutions demonstrates that the proposed phase‐field model can accurately model both nucleation and propagation of hydraulic fractures. Additionally, we present the simulation of hydraulic fracturing in a three‐dimensional domain with various stress conditions to demonstrate the applicability of the method to realistic scenarios.more » « less
-
Abstract. Full-thickness crevasses can transport water from the glacier surface to the bedrock where high water pressures can open kilometre-long cracks along the basal interface, which can accelerate glacier flow. We present a first computational modelling study that describes time-dependent fracture propagation in an idealised glacier causing rapid supraglacial lake drainage. A novel two-scale numerical method is developed to capture the elastic and viscoelastic deformations of ice along with crevasse propagation. The fluid-conserving thermo–hydro–mechanical model incorporates turbulent fluid flow and accounts for melting and refreezing in fractures. Applying this model to observational data from a 2008 rapid-lake-drainage event indicates that viscous deformation exerts a much stronger control on hydrofracture propagation compared to thermal effects. This finding contradicts the conventional assumption that elastic deformation is adequate to describe fracture propagation in glaciers over short timescales (minutes to several hours) and instead demonstrates that viscous deformation must be considered to reproduce observations of lake drainage rates and local ice surface elevation changes. As supraglacial lakes continue expanding inland and as Greenland Ice Sheet temperatures become warmer than −8 °C, our results suggest rapid lake drainage events are likely to occur without refreezing, which has implications for the rate of sea level rise.more » « less
-
Two- and three-dimensional rock-penetrating-radar data were acquired on the wall of a pillar in an underground limestone mine. The objective was to test the ability of radar to image fractures and karst voids and to characterize their geometry, aperture, and fluid content, with the goal of mitigating mining hazards. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Large pillar wall topography was included in the steep-dip Kirchhoff migration algorithm because standard elevation corrections are inaccurate. The depth-migrated 250 MHz radar images illuminate fractures, karst voids, and the far wall of the pillar up to approximately 25 m depth into the rock, with a spatial resolution of <0.5 m. Higher frequency radar improved the image resolution and aided in the interpretation, but at the cost of shallower depth of penetration and extra acquisition effort. Due to the strong contrast in physical properties between the rock and the fracture fluid, fractures with apertures as thin as a 50th of a radar wavelength were imaged. Water-filled fractures with mm-scale aperture and air-filled fractures with cm-scale apertures produce strong reflections at 250 MHz. A strong variation in the reflection amplitude along each fracture is interpreted to represent the variable fracture aperture and the nonplanar fracture structure. Fracture apertures were quantitatively measured, but distinguishing water from air-filled fractures was not possible due to the complex radar wavelet and fracture geometry. Two conjugate fracture sets were imaged. One of these fracture sets dominates the rock mass stability and water inrush challenges throughout the mine. All of the detected voids and a large cave are at the intersection of two fractures, indicating preferential water flow and dissolution along conjugate fracture intersections. Detecting, locating, and characterizing fractures and voids prior to excavation can enable miners to mitigate potential collapse and flood hazards before they occur.more » « less
-
A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal level, i.e., fracture under loading paths that may take advantage of either of the functional properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within the kinematically linear regime. The model accounts for reversible phase transformation from austenite to martensite habit plane variants and plastic deformation in the austenite phase. Transformation-induced plastic deformation is viewed as a mechanism for accommodation of the local deformation incompatibility at the austenite–martensite interfaces and is accounted for by introducing an interaction term in the free energy derived based on the Mori–Tanaka and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous growth within austenite. Based on experimental observations suggesting that NiTi fractures in a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transformation and plastic deformation are assumed to contribute in crack formation and growth indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading (no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑, which is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic transformation is suppressed. The numerical implementation of the model is based on an efficient scheme of viscous regularization in both phase transformation and plastic deformation, an explicit numerical integration via a tangent modulus method, and a staggered scheme for the coupling of the unknown fields. The model is shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant bias load, and crystallographic dependence on crack pattern.more » « less
An official website of the United States government
