skip to main content


Title: Strategies for effective unmanned aerial vehicle use in geological field studies based on cognitive science principles
Abstract Field geologists are increasingly using unmanned aerial vehicles (UAVs or drones), although their use involves significant cognitive challenges for which geologists are not well trained. On the basis of surveying the user community and documenting experts’ use in the field, we identified five major problems, most of which are aligned with well-documented limits on cognitive performance. First, the images being sent from the UAV portray the landscape from multiple different view directions. Second, even with a constant view direction, the ability to move the UAV or zoom the camera lens results in rapid changes in visual scale. Third, the images from the UAVs are displayed too quickly for users, even experts, to assimilate efficiently. Fourth, it is relatively easy to get lost when flying, particularly if the user is unfamiliar with the area or with UAV use. Fifth, physical limitations on flight time are a source of stress, which renders the operator less effective. Many of the strategies currently employed by field geologists, such as postprocessing and photogrammetry, can reduce these problems. We summarize the cognitive science basis for these issues and provide some new strategies that are designed to overcome these limitations and promote more effective UAV use in the field. The goal is to make UAV-based geological interpretations in the field possible by recognizing and reducing cognitive load.  more » « less
Award ID(s):
1839730 1839705
NSF-PAR ID:
10399126
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
GeoScienceWorld
Date Published:
Journal Name:
Geosphere
Volume:
18
Issue:
6
ISSN:
1553-040X
Page Range / eLocation ID:
1958 to 1973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mixed-initiative visual analytics systems incorporate well-established design principles that improve users' abilities to solve problems. As these systems consider whether to take initiative towards achieving user goals, many current systems address the potential for cognitive bias in human initiatives statically, relying on fixed initiatives they can take instead of identifying, communicating and addressing the bias as it occurs. We argue that mixed-initiative design principles can and should incorporate cognitive bias mitigation strategies directly through development of mitigation techniques embedded in the system to address cognitive biases in situ. We identify domain experts in machine learning adopting visual analytics techniques and systems that incorporate existing mixed-initiative principles and examine their potential to support bias mitigation strategies. This examination considers the unique perspective these experts bring to visual analytics and is situated in existing user-centered systems that make exemplary use of design principles informed by cognitive theory. We then suggest informed opportunities for domain experts to take initiative toward addressing cognitive biases in light of their existing contributions to the field. Finally, we contribute open questions and research directions for designers seeking to adopt visual analytics techniques that incorporate bias-aware initiatives in future systems. 
    more » « less
  2. Abstract

    Freshwater ecosystems are vast areas that are constantly changing and evolving. To maintain the ecosystem as well as the structures located close to bodies of water, frequent monitoring is required. Although dangerous and time consuming, manual operations are the conventional way of monitoring such areas. Recently, Autonomous Surface Vehicles (ASVs) have been proposed to undertake the monitoring task. As any other platform, ASVs have limitations, such as a restricted point of view and access only where the water is sufficiently deep. Unmanned Aerial Vehicles (UAVs) can fly over any terrain and provide a “bird's‐eye‐view” of the environment. However, UAVs have limited operational time due to power constraints. Heterogeneous marsupial robotic systems use different types of robots to augment their operation envelope, taking advantage of their individual strengths. A marsupial survey system comprised an ASV and a UAV for freshwater monitoring is developed and presented in this paper. This system is able to complete long missions and reach remote locations while also being able to generate detailed maps and inspections of points of interest. The system was thoroughly tested during a 6‐month period in a number of field deployments in freshwater ecosystems at Lake Murray and at the Congaree River, SC, USA, to validate its capabilities.

     
    more » « less
  3. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  4. Free-body diagrams (FBDs) are diagrammatic representations of external forces and moments exerted on an object of interest for solving kinetics problems. Several studies have reported different ways of teaching FBDs in terms of pictorial representation of forces (e.g., placement of vectors or labeling). However, there is little research on practice strategies for helping students learn how to draw FBDs. Through the use of task analysis and a model of subgoal learning, we will develop task-analysis-guided deliberate practice to enhance learning. Task analysis is often used in instructional design to extract knowledge requirements for acquiring a skill. Skill acquisition is usually divided into three phases including declarative, knowledge compilation, and procedural. Task analysis in our study will identify relevant declarative and procedural knowledge related to drawing FBDs. The findings will be used to develop deliberate practice. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. This has been viewed as a gold standard for practice. Although deliberate practice is mainly studied among elite performers, the recent literature has revealed promising results for novices. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. A knowledge extraction expert will take an iterative approach to conduct task analyses with a subject matter expert (or experts)to distill knowledge to a level that is appropriate for students in the dynamics course. We will then integrate the task analysis results with instructional design strategies derived from cognitive load theory and the subgoal learning model to develop deliberate practice and assessment materials. Examples and assessment results will be provided to evaluate the effectiveness of the instructional design strategies as well as the challenges. 
    more » « less
  5. Free-body diagrams (FBDs) are diagrammatic representations of external forces and moments exerted on an object of interest for solving kinetics problems. Several studies have reported different ways of teaching FBDs in terms of pictorial representation of forces (e.g., placement of vectors or labeling). However, there is little research on practice strategies for helping students learn how to draw FBDs. Through the use of task analysis and a model of subgoal learning, we will develop task-analysis-guided deliberate practice to enhance learning. Task analysis is often used in instructional design to extract knowledge requirements for acquiring a skill. Skill acquisition is usually divided into three phases including declarative, knowledge compilation, and procedural. Task analysis in our study will identify relevant declarative and procedural knowledge related to drawing FBDs. The findings will be used to develop deliberate practice. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. This has been viewed as a gold standard for practice. Although deliberate practice is mainly studied among elite performers, the recent literature has revealed promising results for novices. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. A knowledge extraction expert will take an iterative approach to conduct task analyses with a subject matter expert (or experts)to distill knowledge to a level that is appropriate for students in the dynamics course. We will then integrate the task analysis results with instructional design strategies derived from cognitive load theory and the subgoal learning model to develop deliberate practice and assessment materials. Examples and assessment results will be provided to evaluate the effectiveness of the instructional design strategies as well as the challenges. 
    more » « less