skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Strategies for effective unmanned aerial vehicle use in geological field studies based on cognitive science principles
Abstract Field geologists are increasingly using unmanned aerial vehicles (UAVs or drones), although their use involves significant cognitive challenges for which geologists are not well trained. On the basis of surveying the user community and documenting experts’ use in the field, we identified five major problems, most of which are aligned with well-documented limits on cognitive performance. First, the images being sent from the UAV portray the landscape from multiple different view directions. Second, even with a constant view direction, the ability to move the UAV or zoom the camera lens results in rapid changes in visual scale. Third, the images from the UAVs are displayed too quickly for users, even experts, to assimilate efficiently. Fourth, it is relatively easy to get lost when flying, particularly if the user is unfamiliar with the area or with UAV use. Fifth, physical limitations on flight time are a source of stress, which renders the operator less effective. Many of the strategies currently employed by field geologists, such as postprocessing and photogrammetry, can reduce these problems. We summarize the cognitive science basis for these issues and provide some new strategies that are designed to overcome these limitations and promote more effective UAV use in the field. The goal is to make UAV-based geological interpretations in the field possible by recognizing and reducing cognitive load.  more » « less
Award ID(s):
1839730 1839705
PAR ID:
10399126
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
GeoScienceWorld
Date Published:
Journal Name:
Geosphere
Volume:
18
Issue:
6
ISSN:
1553-040X
Page Range / eLocation ID:
1958 to 1973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mixed-initiative visual analytics systems incorporate well-established design principles that improve users' abilities to solve problems. As these systems consider whether to take initiative towards achieving user goals, many current systems address the potential for cognitive bias in human initiatives statically, relying on fixed initiatives they can take instead of identifying, communicating and addressing the bias as it occurs. We argue that mixed-initiative design principles can and should incorporate cognitive bias mitigation strategies directly through development of mitigation techniques embedded in the system to address cognitive biases in situ. We identify domain experts in machine learning adopting visual analytics techniques and systems that incorporate existing mixed-initiative principles and examine their potential to support bias mitigation strategies. This examination considers the unique perspective these experts bring to visual analytics and is situated in existing user-centered systems that make exemplary use of design principles informed by cognitive theory. We then suggest informed opportunities for domain experts to take initiative toward addressing cognitive biases in light of their existing contributions to the field. Finally, we contribute open questions and research directions for designers seeking to adopt visual analytics techniques that incorporate bias-aware initiatives in future systems. 
    more » « less
  2. Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies. 
    more » « less
  3. Deploying unmanned aerial vehicle (UAV) mounted base stations with a renewable energy charging infrastructure in a temporary event (e.g., sporadic hotspots for light reconnaissance mission or disaster-struck areas where regular power-grid is unavailable) provides a responsive and cost-effective solution for cellular networks. Nevertheless, the energy constraint incurred by renewable energy (e.g., solar panel) imposes new challenges on the recharging coordination. The amount of available energy at a charging station (CS) at any given time is variable depending on: the time of day, the location, sunlight availability, size and quality factor of the solar panels used, etc. Uncoordinated UAVs make redundant recharging attempts and result in severe quality of service (QoS) degradation. The system stability and lifetime depend on the coordination between the UAVs and available CSs. In this paper, we develop a reinforcement learning time-step based algorithm for the UAV recharging scheduling and coordination using a Q-Learning approach. The agent is considered a central controller of the UAVs in the system, which uses the ϵ -greedy based action selection. The goal of the algorithm is to maximize the average achieved throughput, reduce the number of recharging occurrences, and increase the life-span of the network. Extensive simulations based on experimentally validated UAV and charging energy models reveal that our approach exceeds the benchmark strategies by 381% in system duration, 47% reduction in the number of recharging occurrences, and achieved 66% of the performance in average throughput compared to a power-grid based infrastructure where there are no energy limitations on the CSs. 
    more » « less
  4. Recent technological advances have led to an increase in the adoption of Unmanned Aerial Vehicles (UAVs) in a variety of use-case scenarios. In particular, Departments of Transportation in several states in the United States have been exploring the use of UAVs for bridge and infrastructure inspections to improve safety and reduce the costs of the inspection process. UAVs are remotely piloted from a cockpit or a ground station via radio channels. The UAV's state information and payload information are also transmitted to the cockpit/ground station via radio frequency (RF) signals. The RF channels that are commonly used by most UAVs are 72-73, 902-928 and 2400-2483.5 MHz bands, which is also shared by several other communication protocols such as, WiFi and ZigBee networks, and therefore, the interference effects with the other services on the UAV's operation performance cannot be overlooked, particularly to maintain the minimum distance from the close by surfaces while flying alongside and underneath the bridges to achieve the best results. The loss of signal or even signal strength during such close flights can cause damage to the UAV. Especially while inspecting the bridges located in the urban areas that involve a lot of RF communication around due to presence of sever RC devices providing different services. Conventional Electromagnetic Compatibility (EMC) adherence requirements imposed on electronic systems are not adequate for UAVs due to their airborne nature and the presence of the other RF sources in the environment. Thus, in this work, we investigate the compliance of EMC requirements by designing and conducting field experiments to expose the UAVs to electromagnetic interference and distortions that are likely to be encountered during the UAV operation. The results of this work will enable us to assess the level of RF immunity of the general-purpose UAVs to aid in the selection of a suitable UAV platform for bridge inspection and develop safety procedures for minimizing the impact of RF interference. 
    more » « less
  5. To broaden and promote the applications of unmanned aerial vehicles (UAVs), UAVs with agile and omnidirectional mobility enabled by full or over actuation are a growing field of research. However, the balance of motion agility and force (energy) efficiency is challenging for a fixed UAV structure. This paper presents the new design of a transformable UAV, which can operate as a coplanar hexacopter or as an omnidirectional multirotor based on different operation modes. The UAV has 100% force efficiency for launching or landing tasks in the coplanar mode. In the omnidirectional mode, the UAV is fully actuated in the air for agile mobility in six degrees of freedom (DOFs). Models and control design are developed to characterize the motion of the transformable UAV. Simulation results are presented to validate the transformable UAV design and the enhanced UAV performance, compared with a fixed structure. 
    more » « less