skip to main content


Title: Full Paper:Student Perceptions of Involvement, Identity, and Success in an NSF-funded STEM Access Program at Baylor University
Full Paper: Involvement, Identity, and Success in an NSF-funded STEM Access Program In the United States, attrition in STEM fields has been a point of growing concern. The National Science Foundation (NSF) funded a variety of programs aimed at bolstering access and success for STEM students (National Academy of Sciences, 2011; Olson & Riordan, 2012). Though few access programs evaluate involvement, student success literature evidences a clear relationship between involvement and success (Astin, 1999; Mayhew et al., 2016). Accordingly, our phenomenological study explored how high-achieving, low-income STEM students in an NSF funded STEM Access Program at Baylor University perceive and experience involvement and success in light of their multiple identities. Baylor University’s ECS Scholars Program currently supports two cohorts of 11 students pursuing degrees in the School of Engineering and Computer Science. As a part of the program, Scholars are engaged in student and faculty mentoring which allows them to meaningfully connect with a support network. In addition, students attend monthly seminars designed to help support their success in and outside of the classroom. These students’ experiences were explored via 60 to 90-minute in-depth, semi-structured interviews. Interviews were transcribed, coded, and themed by the research team. Alternate data collection methods—including campus mapping, photo elicitation, and identity wheel construction exercises—complemented interview data and added additional depth and insight to student statements. Our collective analysis revealed that, in essence, involvement is an arena in which high-achieving, low-income STEM students prioritize and live out salient identities in alignment with their understandings of success. Such findings inform recommendations concerning how faculty and staff may broaden and reframe understandings of involvement to more effectively support the success of STEM students in similar access programs.  more » « less
Award ID(s):
1930502
NSF-PAR ID:
10399132
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2022 First-Year Engineering Experience,
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts, providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges. 
    more » « less
  2. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  3. null (Ed.)
    There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation. 
    more » « less
  4. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented. 
    more » « less
  5. Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participate in outreach events, and conduct research with faculty mentors. Over the course of the two-year program, four dimensions of student engagement (academic, behavioral, cognitive, and affective) are tracked to determine the appropriateness of using these engagement levels as predictors of success. Results: Two cohorts of 20 students were recruited in the fall of 2017 and in the fall of 2018. The first cohort completed the two-year program in the spring of 2020, and the second cohort began the second year of the program in the fall of 2020. No third cohort was recruited in 2020 due the Covid19 pandemic. The third and fourth cohorts will now enter the program in the fall of 2021 and the fall of 2022 respectively. Overall, the results of the Endeavour Program have been positive. The final retention outcome for the first cohort (the only cohort to complete the program thus far) was 85% (17/20). Retention for the second cohort is currently at 100% (20/20). Initial results show that the S-STEM scholars are performing academically as well as their peers who do not share the same risk factors. In addition, the number of completed hours is also on par with their peers. However, the most significant gains were observed in the qualitative data. Students expressed fears and anxieties about the high school to college transition and reported that the guidance provided and the community formed through the Endeavour Program alleviated many of those negative emotions. The full paper shows student engagement data obtained over time for the first and second cohorts as well as lessons learned and directions for future work. Also, examples of advising charts created in an engagement data dashboard show how the quantitative engagement data has been compiled and organized to show early warning signs for current and future cohorts. 
    more » « less