Since the early twentieth century, the amplitudes of tidal constituents in the Gulf of Maine and Bay of Fundy display clear secular trends that are among the largest anywhere observed for a regional body of water. The M2amplitude at Eastport, Maine, increased at a rate of 14.1 ± 1.2 cm per century until it temporarily dropped during 1980–1990, apparently in response to changes in the wider North Atlantic. Annual tidal analyses indicate M2reached an all‐time high amplitude last year (2018). Here we report new estimates of tides derived from nineteenth century water‐level measurements found in the U.S. National Archives. Results from Eastport, Portland, and Pulpit Harbor (tied to Bar Harbor) do
- Award ID(s):
- 2043142
- NSF-PAR ID:
- 10399136
- Date Published:
- Journal Name:
- Nature Climate Change
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 1758-678X
- Page Range / eLocation ID:
- 655 to 661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract not follow the twentieth century trends and indicate that the Gulf of Maine tide changes commenced sometime in the late nineteenth or early twentieth centuries, coincident with a transition to modern rates of sea‐level rise as observed at Boston and Portland. General agreement is that sea level rise alone is insufficient to cause the twentieth‐century tide changes. A role for ocean stratification is suggested by the long‐term warming of Gulf of Maine waters; archival water temperatures at Boston, Portland, and Eastport show increases of ∼2 °C since the 1880s. In addition, a changing seasonal dependence in M2amplitudes is reflected in a changing seasonal dependence in water temperatures. The observations suggest that models seeking to reproduce Gulf of Maine tides must consider both sea level rise and long‐term changes in stratification. -
The atmospheric history of molecular hydrogen (H 2 ) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H 2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H 2 mol −1 air) during the mid to late 1800s. Over the twentieth century, H 2 levels rose by about 70% to 550 ppb. The reconstruction shows good agreement with the H 2 atmospheric history based on firn air measurements from the South Pole. The broad trends in atmospheric H 2 over the twentieth century can be explained by increased methane oxidation and anthropogenic emissions. The H 2 rise shows no evidence of deceleration during the last quarter of the twentieth century despite an expected reduction in automotive emissions following more stringent regulations. During the late twentieth century, atmospheric CO levels decreased due to a reduction in automotive emissions. It is surprising that atmospheric H 2 did not respond similarly as automotive exhaust is thought to be the dominant source of anthropogenic H 2. The monotonic late twentieth century rise in H 2 levels is consistent with late twentieth-century flask air measurements from high southern latitudes. An additional unknown source of H 2 is needed to explain twentieth-century trends in atmospheric H 2 and to resolve the discrepancy between bottom-up and top-down estimates of the anthropogenic source term. The firn air–based atmospheric history of H 2 provides a baseline from which to assess human impact on the H 2 cycle over the last 150 y and validate models that will be used to project future trends in atmospheric composition as H 2 becomes a more common energy source.more » « less
-
Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods.more » « less
-
Abstract Snow surveys in two Arctic watersheds located in Alaska, USA, provide 32 years of spatially distributed snow water equivalent (SWE) and snow depth observations. Annual snow surveys from the Imnavait Creek (20,036 measurements from 1985 to 2017) and Upper Kuparuk River (5,804 measurements from 1997 to 2017) watersheds were conducted to capture end‐of‐winter snow accumulation. The average end‐of‐winter SWE in the Upper Kuparuk River watershed (102 ± 29 mm) is consistently less than the Imnavait Creek watershed (130 ± 34 mm) during the common period of record (1997–2017). The average end‐of‐winter SWE in both watersheds indicates a positive trend. Comparison of SWE records with cumulative solid precipitation measured at the Imnaviat [sic] SNOTEL site highlights the undercatch of gauge precipitation and difference in long‐term trends. In this paper, we present a historic overview of data collection, discuss data accuracy, and point out advantages and limitations associated with ground‐based snow measurements in remote Arctic locations. As new methods and techniques of measuring SWE and solid precipitation become available, the presented data set will provide a historic perspective for new observations and will quantitatively relate current or future snow conditions to those that have occurred since the late twentieth century.
-
null (Ed.)Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure.more » « less