skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Declining tropical cyclone frequency under global warming
Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable.  more » « less
Award ID(s):
2043142
PAR ID:
10399136
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Climate Change
Volume:
12
Issue:
7
ISSN:
1758-678X
Page Range / eLocation ID:
655 to 661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The atmospheric history of molecular hydrogen (H 2 ) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H 2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H 2 mol −1 air) during the mid to late 1800s. Over the twentieth century, H 2 levels rose by about 70% to 550 ppb. The reconstruction shows good agreement with the H 2 atmospheric history based on firn air measurements from the South Pole. The broad trends in atmospheric H 2 over the twentieth century can be explained by increased methane oxidation and anthropogenic emissions. The H 2 rise shows no evidence of deceleration during the last quarter of the twentieth century despite an expected reduction in automotive emissions following more stringent regulations. During the late twentieth century, atmospheric CO levels decreased due to a reduction in automotive emissions. It is surprising that atmospheric H 2 did not respond similarly as automotive exhaust is thought to be the dominant source of anthropogenic H 2. The monotonic late twentieth century rise in H 2 levels is consistent with late twentieth-century flask air measurements from high southern latitudes. An additional unknown source of H 2 is needed to explain twentieth-century trends in atmospheric H 2 and to resolve the discrepancy between bottom-up and top-down estimates of the anthropogenic source term. The firn air–based atmospheric history of H 2 provides a baseline from which to assess human impact on the H 2 cycle over the last 150 y and validate models that will be used to project future trends in atmospheric composition as H 2 becomes a more common energy source. 
    more » « less
  2. Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods. 
    more » « less
  3. Qi, Hu (Ed.)
    Abstract A series of papers published since 1998 assert that U.S. tropical cyclone (TC) damage, when “normalized” for individual wealth, population, and inflation, exhibits no increase attributable to anthropogenic global warming (AGW). This result is here questioned for three reasons: 1) The then-year (no demographic or economic adjustments) U.S. TC damage increases 2.5% yr−1faster than U.S. then-year gross domestic product. This result, which is substantially due to the faster growth of assets in hurricane-prone states, shows that TC impacts on the total U.S. economy double every generation. 2) Fitting of an exponential curve to normalized damage binned by 5-yr “pentads” yields a growth rate of 1.06% yr−1since 1900, although causes besides AGW may contribute. 3) During the twenty-first century, when the Atlantic multidecadal oscillation (AMO) was in its warm phase, the most damaging U.S. TCs struck at twice the rate of the warm AMO of the twentieth century and 4 times the rate of the entire twentieth century, both warm and cool AMO phases. A key unanswered question is as follows: What will happen when (and if) the AMO returns to its cool phase later in this century? Significance StatementU.S. hurricane damage, normalized for changes in inflation, population, and wealth, increases by approximately 1% yr−1. For 1900–2022, 1% yr−1is equivalent to a factor of >3 increase, substantially but not entirely, attributable to climate change. The incidence of the most damaging tropical cyclones (TCs) approximately doubled in the twenty-first century compared with climatologically analogous periods of the twentieth century. These results contradict the previously published work that introduced normalization and found zero trend in normalized damage but are consistent with physical reasoning and modeling studies. 
    more » « less
  4. null (Ed.)
    Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure. 
    more » « less
  5. A standard interpretation of the intensification of segregation in the early twentieth century is that residents of Northern cities reacted against a growing African American presence, using segregation as a tool of social control that was less needed in the South. Evidence from newly available data for 134 cities in 1900–1940 puts this interpretation in question in several ways. We find that segregation was already high in 1900 at the neighborhood scale. Not only was it rising, but it was changing its spatial scale as clusters of Black settlement in side streets and alleys disappeared from White districts while expanding into large Black zones. Finally, multivariate analyses show that trends were similar in the North and South, and in neither region was Black population size (i.e., “Black threat”) a significant predictor of increasing segregation. The general trends of rising segregation and increasing spatial scale became a nationwide pattern. 
    more » « less