skip to main content


Title: Arctic Sea Ice Volume Variability over 1901–2010: A Model-Based Reconstruction
Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods.  more » « less
Award ID(s):
1744587
NSF-PAR ID:
10171941
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
15
ISSN:
0894-8755
Page Range / eLocation ID:
4731 to 4752
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic sea‐ice extent (SIE) has declined drastically in recent decades, yet its evolution prior to the satellite era is highly uncertain. Studies using SIE observations find little variability prior to the 1970s; however, these reconstructions are based on limited data, especially prior to the 1950s. We use ensemble Kalman filter data assimilation of surface air temperature observations with Last Millennium climate model simulations to create a fully gridded Arctic sea‐ice concentration reconstruction from 1850 to 2018 and investigate the evolution of Arctic SIE during this period. We find a decline of ∼1.25×106km2during the early 20th‐century warming (1910–1940). The 25‐year trends during this period are ∼33–38% smaller than the satellite era (1979–2018) but almost twice as large as previous estimates. Additionally, we find that variability of SIE on decadal timescales prior to the satellite era is ∼40% greater than previously estimated.

     
    more » « less
  2. Abstract

    Arctic sea ice loss in response to a warming climate is assessed in 42 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Sea ice observations show a significant acceleration in the rate of decline commencing near the turn of the twenty-first century. It is our assertion that state-of-the-art climate models should qualitatively reflect this accelerated trend within the limitations of internal variability and observational uncertainty. Our analysis shows that individual CMIP6 simulations of sea ice depict a wide range of model spread on biases and anomaly trends both across models and among their ensemble members. While the CMIP6 multimodel mean captures the observed sea ice area (SIA) decline relatively well, an individual model’s ability to represent the acceleration in sea ice decline remains a challenge. Seventeen (40%) out of 42 CMIP6 models and 37 (13%) out of the total 286 ensemble members reasonably capture the observed trends and acceleration in SIA decline. In addition, a larger ensemble size appears to increase the odds for a model to include at least one ensemble member skillfully representing the accelerated SIA trends. Simulations of sea ice volume (SIV) show much larger spread and uncertainty than SIA; however, due to limited availability of sea ice thickness data, these are not as well constrained by observations. Finally, we find that models with more ocean heat transport simulate larger sea ice declines, which suggests an emergent constraint in CMIP6 ensembles. This relationship points to the need for better understanding and modeling of ice–ocean interactions, especially with respect to frazil ice growth.

     
    more » « less
  3. Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. 
    more » « less
  4. Abstract

    Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms.

    Significance Statement

    Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.

     
    more » « less
  5. Abstract We address the challenge, due to sparse observational records, of investigating long-term changes in the storm surge climate globally. We use two centennial and three satellite-era daily storm surge time series from the Global Storm Surge Reconstructions (GSSR) database and assess trends in the magnitude and frequency of extreme storm surge events at 320 tide gauges across the globe from 1930, 1950, and 1980 to present. Before calculating trends, we perform change point analysis to identify and remove data where inhomogeneities in atmospheric reanalysis products could lead to spurious trends in the storm surge data. Even after removing unreliable data, the database still extends existing storm surge records by several decades for most of the tide gauges. Storm surges derived from the centennial 20CR and ERA-20C atmospheric reanalyses show consistently significant positive trends along the southern North Sea and the Kattegat Bay regions during the periods from 1930 and 1950 onwards and negative trends since 1980 period. When comparing all five storm surge reconstructions and observations for the overlapping 1980–2010 period we find overall good agreement, but distinct differences along some coastlines, such as the Bay of Biscay and Australia. We also assess changes in the frequency of extreme surges and find that the number of annual exceedances above the 95th percentile has increased since 1930 and 1950 in several regions such as Western Europe, Kattegat Bay, and the US East Coast. 
    more » « less