skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flow Over a Seal Whisker Inspired Geometry at Swept Back Angles
This work investigates the response of forces from fluid flow around seal whisker inspired cylinder geometry at swept back angles. The unique, undulated surface of seal whiskers has been shown to reduce drag and oscillating lift in comparison to smooth cylinders of equivalent dimensions. As seals swim through the water, their whisker orientation with respect to the freestream is constantly changing due to body position, but also the ability to manipulate the position of their whiskers while sensing. Though the effects of orientation and geometry parameters such as varied angle of attack, changes to undulation wavelength, amplitude, and aspect ratio have been investigated in previous literature, there is little research dedicated to characterizing the response of undulated cylinder geometry at sweep angles. In this paper, direct numerical simulation of incompressible flow over a highly resolved whisker surface is used to simulate flow structures and forces over whisker-inspired cylinders at a range of sweep angles from 0 to 60 degrees. It is observed that the decrease in forces in comparison to circular cylinders is still present at all swept angles tested. Root-mean-squared lift coefficient displays a 51.9 to 93.8% reduction, whereas drag displays a 12.9 to 39.1% reduction. When compared to forces on a streamlined elliptical cylinder, sweep angles of 0 to 30 degrees result in a force reduction advantage for the undulated cylinder geometry. Beyond this range at sweep angles of 45 and 60, drag and lift coefficients closely mirror those of the streamlined ellipse and undulated geometry offers no improvement.  more » « less
Award ID(s):
2035789
PAR ID:
10399144
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AIAA Aviation Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction. 
    more » « less
  2. Zheng, X. (Ed.)
    This study presents a novel method that combines a computational fluid-structure interaction model with an interpretable deep-learning model to explore the fundamental mechanisms of seal whisker sensing. By establishing connections between crucial signal patterns, flow characteristics, and attributes of upstream obstacles, the method has the potential to enhance our understanding of the intricate sensing mechanisms. The effectiveness of the method is demonstrated through its accurate prediction of the location and orientation of a circular plate placed in front of seal whisker arrays. The model also generates temporal and spatial importance values of the signals, enabling the identification of significant temporal-spatial signal patterns crucial for the network’s predictions. These signal patterns are further correlated with flow structures, allowing for the identification of important flow features relevant for accurate prediction. The study provides insights into seal whiskers’ perception of complex underwater environments, inspiring advancements in underwater sensing technologies. 
    more » « less
  3. The cross-flow vortex-induced vibration (VIV) response of an elastically mounted idealized undulatory seal whisker (USW) shape is investigated in a wide range of reduced velocity at angles of attack (AOAs) from 0° to 90° and a low Reynolds number of 300. The mass ratio is set to 1.0 to represent the real seal whisker. Dynamic mode decomposition is used to investigate the vortex shedding mode in various cases. In agreement with past studies, the VIV response of the USW is highly AOA-dependent because of the change in the underlying vortex dynamics. At zero AOA, the undulatory shape leads to a hairpin vortex mode that results in extremely low lift force oscillation with a lowered frequency. The frequency remains unaffected by VIV throughout the tested range of reduced velocity. As the AOA deviates from zero, alternating shedding of spanwise vortices becomes dominant. A mixed vortex shedding mode is observed at AOA = 15° in the transition. As the AOA deviated from zero, the VIV amplitude increases rapidly by two orders, reaching the maximum of about 3 times diameter at 90°. An infinite lock-in branch is present for AOA from 60° to 90°, where the VIV amplitude remains high regardless of the increase in reduced velocity. 
    more » « less
  4. Pinniped vibrissae possess a unique and complex three-dimensional topography, which has beneficial fluid flow characteristics such as substantial reductions in drag, lift, and vortex induced vibration. To understand and leverage these effects, the downstream vortex dynamics must be studied. Dye visualization is a traditional qualitative method of capturing these downstream effects, specifically in comparative biological investigations where complex equipment can be prohibitive. High-fidelity numerical simulations or experimental particle image velocimetry are commonplace for quantitative high-resolution flow measurements, but are computationally expensive, require costly equipment, and can have limited measurement windows. This study establishes a method for extracting quantitative data from standard dye visualization experiments on seal whisker geometries by leveraging novel but intuitive computer vision techniques, which maintain simplicity and an advantageous large experimental viewing window while automating the extraction of vortex frequency, position, and advection. Results are compared to direct numerical simulation (DNS) data for comparable geometries. Power spectra and Strouhal numbers show consistent behavior between methods for a Reynolds number of 500, with minima at the canonical geometry wavelength of 3.43 and a peak frequency of 0.2 for a Reynolds number of 250. The vortex tracking reveals a clear increase in velocity from roll-up to 3.5 whisker diameters downstream, with a strong overlap with the DNS data but shows steady results beyond the limited DNS window. This investigation provides insight into a valuable bio-inspired engineering model while advancing an analytical methodology that can readily be applied to a broad range of comparative biological studies. 
    more » « less
  5. Abstract Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles. 
    more » « less