skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students
Research efforts tried to expose students to security topics early in the undergraduate CS curriculum. However, such efforts are rarely adopted in practice and remain less effective when it comes to writing secure code. In our prior work, we identified key issues with the how students code and grouped them into six themes: (a) Knowledge of C, (b) Understanding compiler and OS messages, (c) Utilization of resources, (d) Knowledge of memory, (e) Awareness of unsafe functions, and (f) Understanding of security topics. In this work, we aim to understand students' knowledge about each theme and how that knowledge affects their secure coding practices. Thus, we propose a modified SOLO taxonomy for the latter five themes. We apply the taxonomy to the coding interview data of 21 students from two US R1 universities. Our results suggest that most students have limited knowledge of each theme. We also show that scoring low in these themes correlates with why students fail to write secure code and identify possible vulnerabilities.  more » « less
Award ID(s):
2044473
PAR ID:
10399152
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Technical Symposium on Computer Science Education (SIGCSE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Often, security topics are only taught in advanced computer science (CS) courses. However, most US R1 universities do not require students to take these courses to complete an undergraduate CS degree. As a result, students can graduate without learning about computer security and secure programming practices. To gauge students’ knowledge and skills of secure programming, we conducted a coding interview with 21 students from two R1 universities in the United States. All the students in our study had at least taken Computer Systems or an equivalent course. We then analyzed the students’ approach to safe programming practices, such as avoiding unsafe functions like gets and strcpy, and basic security knowledge, such as writing code that assumes user inputs can be malicious. Our results suggest that students lack the key fundamental skills to write secure programs. For example, students rarely pay attention to details, such as compiler warnings, and often do not read programming language documentation with care. Moreover, some students’ understanding of memory layout is cursory, which is crucial for writing secure programs. We also found that some students are struggling with even the basics of C programming, even though it is the main language taught in Computer Systems courses. 
    more » « less
  2. Nowadays, cyberattack incidents are happening on a daily basis. As a result, the demand for a larger and more challenging workforce is increasing. To handle this demand, academic institutions offer cybersecurity courses and degree programs into their curricula; however, more efforts are needed to address the high demand of the cybersecurity workforce. This work aims to bridge the gap between workforce shortage and the number of qualified graduates to fill the positions. We approach this by introducing cybersecurity concepts at the early stage of undergraduate curricula of computer science and engineering programs. Secure programming is critical as many cybersecurity incidents happen due to software vulnerabilities. However, most UG-level programming courses pay little attention to secure programming practices. As a result, many students graduate with limited knowledge of security vulnerabilities that might plague the developed software. Our goal in this work is to introduce secure programming at introductory level programming courses so that students should be aware of cybersecurity issues and use this security mindset in advanced level courses and projects in their degree programs. To accomplish this goal, we developed intuitive and interactive modules emphasizing secure programming in C++ and Java courses to help students become secure software developers. These modules will be used alongside the coursework to emphasize certain vulnerabilities within the programming environment of a specific language and allow students to learn cybersecurity topics, enforcing a solid foundation and understanding. We developed cybersecurity educational modules for C++ and Java as they are amongst the popular languages and used in introductory programming courses. While designing these modules, we kept in mind that the topics must be relevant to real-world issues in the software industry. We used a variety of resources and benchmarks to ensure the authenticity of our chosen topics, including Common Weakness Enumeration (CWE) and Common Vulnerability and Exposures (CVE). While choosing module topics to develop, we had some restrictions. For example, the topics must be introductory and easy to understand. These modules are geared towards freshman or sophomore-level UG students who have just started programming. The developed security modules have four components: power-point slides, lab description, code template for the lab, and complete solution. The complete solution for each module will be provided to the instructors to check students’ work if they adopt the modules in their courses. The modules developed for a C++ programming course include labs on input validation, integer overflow, random number generation, function call with incorrect argument type, and dangling pointers. In Java, we developed lab modules for input validation, integer overflow, null object reference, random number generator, and data encapsulation. 
    more » « less
  3. null (Ed.)
    Lack of security expertise among software practitioners is a problem with many implications. First, there is a deficit of security professionals to meet current needs. Additionally, even practitioners who do not plan to work in security may benefit from an increased understanding of security. The goal of this paper is to aid software engineering educators in designing a comprehensive software security course by sharing an experience running a software security course for the eleventh time. Through all the eleven years of running the software security course, the course objectives have been comprehensive -- ranging from security testing, to secure design and coding, to security requirements to security risk management. For the first time in this eleventh year, a theme of the course assignments was to map vulnerability discovery to the security controls of the Open Web Application Security Project (OWASP) Application Security Verification Standard (ASVS). Based upon student performance on a final exploratory penetration testing project, this mapping may have increased students' depth of understanding of a wider range of security topics. The students efficiently detected 191 unique and verified vulnerabilities of 28 different Common Weakness Enumeration (CWE) types during a three-hour period in the OpenMRS project, an electronic health record application in active use. 
    more » « less
  4. Despite yielding benefits for organizations, infrastructure as code (IaC) scripts are susceptible to security weaknesses, such as hard-coded passwords. Existence of such security weaknesses necessitate integration of education materials related to secure development of IaC scripts. In this preliminary work, we describe our experiences of how application of authentic learning helped students learn about secure development of IaC scripts. Our paper shows education materials based on authentic learning to help students learn about secure IaC development. 
    more » « less
  5. This project, titled Collective Argumentation Learning and Coding (CALC), aims to use the principles of collective argumentation to teach coding through appropriate reasoning. Creating and critiquing arguments as part of a coding activity promotes a more structured approach rather than the trial-and-error coding activity commonly used by novice programmers. Teaching coding via collective argumentation allows teachers to use methods that are already in use in mathematics and science instruction to teach coding, thus increasing the probability that it will be taught in conjunction with mathematics and science as regular parts of classroom instruction rather than relegated to an after-school or enrichment activity for only some students. Specific objectives of the CALC project are to - increase the attention that coding is given in the elementary classrooms taught by our participating teachers, and -direct students away from informal approaches (e.g.trial-and-error) to develop code to the more formal, structured approach recommended for novice programmers. Our research activities investigate teachers’ understanding of argumentation using the CALC concept and how the implementation of the CALC concept helps students (grades 3-5) learn how to code. The CALC approach supports the learning of coding by providing teachers with a formal, structured means to a) trace the growth of students’ understanding, and misunderstanding, of ideas (i.e., coding) as they form, b) facilitate students’ use of evidence, not opinion, to select a solution among multiple solutions (i.e., different sequencing of the code), and c) help each student realize she/he, as well as others, is a legitimate participant (i.e., a programmer) in the activity of developing, assessing and implementing an idea (e.g., coding of a robot). This paper/presentation discussed the first phase of an on-going investigation and focuses on a prototype graduate-level course designed for and taught to practicing elementary school teachers. The discussion outlines how the course impacted the participating teachers content knowledge of coding and their belief that coding can be made an integral part of everyday lessons, not as an add-on activity. 
    more » « less