skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: STRONG MICROSTREAMING FROM A PINNED OSCILLATING MEMBRANE AND APPLICATION TO GAS EXCHANGE
We present a novel configuration to generate strong acoustic streaming vortices by a pinned oscillating membrane in a microchannel, its characterizations via advanced measurement techniques, and initial studies in application by augmentation of gas exchange across a permeable membrane towards microfluidic artificial lung technology. The configuration is stable over time and does not create any obstruction in flow passages. For an audible- frequency 20 Vpp input to a piezo buzzer, streaming velocity was measured up to 47 mm/s. Mixing from helical flow patterns in the microchannel augments gas transfer rate across the membrane up to 3.4 times compared to no actuation, allowing larger channel dimensions (better facilitation of scale-up manufacturing) and reduced shear (more hemocompatible) in microchannel-based artificial lung systems.  more » « less
Award ID(s):
1951051
PAR ID:
10399252
Author(s) / Creator(s):
Date Published:
Journal Name:
2023 IEEE Conference on Microelectromechanical systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Driving oscillatory flow around an obstacle generates, due to inertial rectification, a steady ‘streaming’ flow that is useful in a host of microfluidic applications. While theory has focused largely on two-dimensional flows, streaming in many practical microfluidic devices is three-dimensional due to confinement. We develop a three-dimensional streaming theory around an obstacle in a microchannel with a Hele-Shaw-like geometry, where one dimension (depth) is much shorter than the other two dimensions. Utilizing inertial lubrication theory, we demonstrate that the time-averaged streaming flow has a three-dimensional structure. Notably, the flow reverses direction across the depth of the channel, which is a feature not observed in less confined streaming set-ups. This feature is confirmed by our experiments of streaming around a cylinder sandwiched in a microchannel. Our theory also predicts that the streaming velocity decays as the inverse cube of the distance from the cylinder, faster than that expected from previous two-dimensional approaches. We verify this velocity decay quantitatively using particle tracking measurements from experiments of streaming around cylinders with different aspect ratios at different driving frequencies. 
    more » « less
  2. This paper presents a novel configuration for generating acoustic microstreaming flows at audible frequencies within a microchannel utilizing a pinned oscillating membrane. 
    more » « less
  3. Microstreaming of acoustically excited bubbles presents great potential to mitigate fouling for membrane technologies. However, the acoustic streaming in bulk fluids under membrane separation conditions is not well explored. In this work, we investigate the microstreaming of 3D printed Helmholtz-like bubble-trapping structures (BTSs) under no flow, pressurized, and crossflow conditions that are relevant to membrane applications. Trapped bubbles are shown to generate formidable microstreaming that spans millimeter distances with velocity as high as 125 mm/s in a bulk aqueous medium. However, complex mode shapes of the bubble oscillation and bubble growth were observed during the frequency sweep. As a result, the streaming velocity decreases by 76% over 30 min, under single frequency excitation. The BTS displayed effective microstreaming under hydrostatic pressure up to 9.0 kPa, and under a crossflow velocity up to 0.2 mm/s, where the microstreaming zone reduced to <1 mm. The results provide the operation window, as well as challenges, for future integration of the BTS into bulk membrane separation processes. 
    more » « less
  4. Abstract We performed the transport of a breast cancer cell (MB231-TGFb) in a microvessel using high-resolution simulations. Using open-source imaging software Slicer3D and Meshmixer, the 3D surface mesh forming the cell membrane was reconstructed from confocal microscopic images. The Dissipative Particle Dynamics method is used to model the cell membrane. The extracellular fluid flow is modeled with the Immersed Boundary Method to solve the governing equations of the blood plasma. The unsteady flow is applied at the inlet of the microchannel with an oscillatory pattern. Our results showed that the extracellular flow patterns are highly dependent on the waveform profile. The oscillatory flow showed the creation of vortices that influence the cellular deformations in the microchannel. These results could have implications on the destination of the cancer cells during transport in physiological flows. 
    more » « less
  5. This study investigates the effect on varying flow rates and bubble sizes on gas–liquid flow through porous media in a horizontal microchannel. A simple bubble generation system was set up to generate bubbles with controllable sizes and frequencies, which directly flowed into microfluidic channels packed with different sizes of glass beads. Bubble flow was visualized using a high-speed camera and analyzed to obtain the change in liquid holdup. Pressure data were measured for estimation of hydraulic conductivity. The bubble displacement pattern in the porous media was viscous fingering based on capillary numbers and visual observation. Larger bubbles resulted in lower normalized frequency of the bubble breakthrough by 20 to 60 percent. Increasing the flow rate increased the change in apparent liquid holdup during bubble breakthrough. Larger bubbles and lower flow rate reduced the relative permeability of each channel by 50 to 57 percent and 30 to 64 percent, respectively. 
    more » « less