skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of the partitioning and coset algorithm quotient group partial meanings in comprehending the First Isomorphism Theorem and its proof
In many advanced mathematics courses, comprehending theorems and proofs is an essential activity for both students and mathematicians. Such activity requires readers to draw on relevant meanings for the concepts involved; however, the ways that concept meaning may shape comprehension activity is currently undertheorized. In this paper, we share a study of student activity as they work to comprehend the First Isomorphism Theorem and its proof. We analyze, using an onto-semiotic lens, the ways that students’ meanings for quotient group both support and constrain their comprehension activity. Furthermore, we suggest that the relationship between understanding concepts and proof comprehension can be reflexive: understanding of concepts not only influences comprehension activity, but engaging with theorems and proofs can serve to support students in generating more sophisticated understanding of the concepts involved.  more » « less
Award ID(s):
1836559
PAR ID:
10399289
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Educational Studies in Mathematics
ISSN:
0013-1954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cook, S.; Katz, B.; Moore-Russo D. (Ed.)
    Learning to interpret proofs is an important milepost in the maturity and development of students of higher mathematics. A key learning objective in proof-based courses is to discern whether a given proof is a valid justification of its underlying claim. In this study, we presented students with conditional statements and associated proofs and asked them to determine whether the proofs proved the statements and to explain their reasoning. Prior studies have found that inexperienced provers often accept the proof of a statement’s converse and reject proofs by contraposition, which are both erroneous determinations. Our study contributes to the literature by corroborating these findings and suggesting a connection between students’ reading comprehension and proof validation behaviors and their beliefs about mathematical proof and mathematical knowledge base. 
    more » « less
  2. Cook, S.; Katz, B.; Moore-Russo, D. (Ed.)
    This paper presents six categories of undergraduate student explanations and justifications regarding the question of whether a converse proof proves a conditional theorem. Two categories of explanation led students to judge that converse proofs cannot so prove, which is the normative interpretation. These judgments depended upon students spontaneously seeking uniform rules of proving across various theorems or assigning a direction to the theorems and proof. The other four categories of explanation led students to affirm that converse proofs prove. We emphasize the rationality of these non-normative explanations to suggest the need for further work to understand how we can help students understand the normative rules of logic. 
    more » « less
  3. null (Ed.)
    Dependently typed languages allow programmers to state and prove type class laws by simply encoding the laws as class methods. But writing implementations of these methods frequently give way to large amounts of routine, boilerplate code, and depending on the law involved, the size of these proofs can grow superlinearly with the size of the datatypes involved. We present a technique for automating away large swaths of this boilerplate by leveraging datatype-generic programming. We observe that any algebraic data type has an equivalent representation type that is composed of simpler, smaller types that are simpler to prove theorems over. By constructing an isomorphism between a datatype and its representation type, we derive proofs for the original datatype by reusing the corresponding proof over the representation type. Our work is designed to be general-purpose and does not require advanced automation techniques such as tactic systems. As evidence for this claim, we implement these ideas in a Haskell library that defines generic, canonical implementations of the methods and proof obligations for classes in the standard base library. 
    more » « less
  4. Abstract The Reading and Appreciating Mathematical Proofs (RAMP) project seeks to provide novel resources for teaching undergraduate introduction to proof courses centered around reading activities. These reading activities include (1) reading rich proofs to learn new mathematics through proofs as well as to learn how to read proofs for understanding and (2) reading mathematician stories to humanize proving and to legitimize challenge and struggle. One of the guiding analogies of the project is thinking about learning proof-based mathematics like learning a genre of literature. We want students to read interesting proofs so they can appreciate what is exciting about the genre and how they can engage with it. Proofs were selected by eight professors in mathematics who as curriculum co-authors collected intriguing mathematical results and added stories of their experience becoming mathematicians. As mathematicians of colour and/or women mathematicians, these co-authors speak to the challenges they faced in their mathematical history, how they overcame these challenges, and the key role mentors and community have played in that process. These novel opportunities to learn to read and read to learn in the proof-based context hold promise for supporting student learning in new ways. In this commentary, we share how we have sought to humanize proof-based mathematics both in the reading materials and in our classroom implementation thereof.  
    more » « less
  5. Undergraduate mathematics instructors are called by recent standards to promote prospective teachers’ learning of a transformation approach in geometry and its proofs. The novelty of this situation means it is unclear what is involved in prospective teachers’ learning of geometry from a transformation perspective, particularly if they learned geometry from an approach based on the Elements; hence undergraduate instructors may need support in this area. To begin to approach this problem, we analyze the prospective teachers’ use of the conceptual link between congruence and transformation in the context of congruence. We identify several key actions involved in using the definition of congruence in congruence proofs, and we look at ways in which several of these actions are independent of each other, hence pointing to concepts and actions that may need to be specifically addressed in instruction. 
    more » « less