skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lessons Learned About Incorporating High-Leverage Teaching Practices in the Undergraduate Proof Classroom to Promote Authentic and Equitable Participation
In recent years, professional organizations in the United States have suggested undergraduate mathematics shift away from pure lecture format. Transitioning to a student-centered class is a complex instructional undertaking especially in the proof-based context. In this paper, we share lessons learned from a design-based research project centering instructional elements as objects of design. We focus on how three high leverage teaching practices (HLTP; established in the K-12 literature) can be adapted to the proof context to promote student engagement in authentic proof activity with attention to issues of access and equity of participation. In general, we found that HLTPs translated well to the proof setting, but required increased attention to navigating between formal and informal mathematics, developing precision around mathematical objects, supporting competencies beyond formal proof construction, and structuring group work. We position this paper as complementary to existing research on instructional innovation by focusing not on task trajectories, but on concrete teaching practices that can support successful adaption of student-centered approaches.  more » « less
Award ID(s):
1836559
PAR ID:
10399290
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Research in Undergraduate Mathematics Education
ISSN:
2198-9745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While student-centered learning has been shown to improve learning experiences in the engineering classroom, adoption of these evidence-based strategies has been slow. Research has shown that faculty beliefs about teaching and limited exposure to formal training influence effective implementation of evidenced-based instructional practices. Thus, in an effort to explore ways to implement long-term instructional change in engineering higher education, a graduate-level course, the Instructional Incubator (I2), was developed to expose future educators to instructional design and evidence-based practices. In the I2, student participants developed new biomedical engineering short-courses in an active learning classroom. For the first two iterations of the I2, we examined how this immersive experience influenced participants’ perceived teaching abilities and understanding before and after enrolling in the I2. Both I2 cohorts reported an increase in knowledge of engineering education related terms and showed a shift away from behaviorist and cognitive beliefs about teaching and learning. Introduction 
    more » « less
  2. College and department administrators take undergraduate student complaints about Graduate Student Instructors (GSIs) seriously. However, little research has been done to examine the nature of undergraduate student complaints across multiple mathematics departments from the lens of student-centered instruction. In this study, we compared formal (i.e. documented in writing by the student) undergraduate mathematics student complaints about GSIs at two universities over five years. Complaints were analyzed by coding the contextualized concerns described in the complaints using the Mathematical Association of America’s Instructional Practices Guide to align complaints with topics discussed as best-teaching practices. Results demonstrated that concerns about classroom and assessment practices were the most prevalent. Concerns about classroom practices were slightly more abundant and more pervasive throughout the semester than concerns about assessment practices. Additionally, an outside-of-class issue undergraduate students raised was regarding the effectiveness of GSIs communication via emails. 
    more » « less
  3. Using mixed-method social network analysis, we explored the discussions happening between instructors within a teaching-related network and how instructional expertise correlated with the content of those discussions. Instructional expertise, defined by the extent to which effective teaching practices were implemented, was measured for 82 faculty teaching at a Midwestern research university in the USA using the Faculty Inventory of Methods and Practices Associated with Competent Teaching (F-IMPACT). Eight instructors from this population were interviewed after being selected from a stratified random sample having varied disciplines, positions, years of teaching experience, number of network alters, and quartile F-IMPACT score. Network Canvas was used to design, capture, and export network data during the interview process, and a deductive qualitative analysis approach was used for coding and analysis. In general, expert instructors had larger networks that also consisted of expert alters and greater frequency of discussions throughout the semester (both formal and informal) and participated in discussions centered around best practices and education research. Inexpert instructors had smaller teaching networks that consisted of other inexpert instructors, lower frequency of interactions, and had discussions that centered around sharing course-specific, surface-level advice. 
    more » « less
  4. Grawe, Nathan D (Ed.)
    Many educators and professional organizations recommend Quantitative Reasoning as the best entry-level postsecondary mathematics course for non-STEM majors. However, novice and veteran instructors who have no prior experience in teaching a QR course often express their ignorance of the content to choose for this course, the instruction to offer students, and the assessments to measure student learning. We conducted a case study to investigate the initial implementation of an entry-level university quantitative reasoning course during fall semester, 2018. The participants were the course instructor and students. We examined the instructor’s motives and actions and the students’ responses to the course. The instructor had no prior experience teaching a QR course but did have 15 years of experience teaching student-centered mathematics. Data included course artifacts, class observations, an instructor interview, and students’ written reflections. Because this was a new course—and to adapt to student needs—the instructor employed his instructional autonomy and remained flexible in designing and enacting the course content, instruction, and assessment. His instructional decision making and flexible approach helped the instructor tailor the learning activities and teaching practices to the needs and interests of the students. The students generally appreciated and benefited from this approach, enjoyed the course, and provided positive remarks about the instructors’ practices. 
    more » « less
  5. Cook, S.; Infante, N. (Ed.)
    In the context of proofs, researchers have distinguished between syntactic reasoning and semantic reasoning; however, this distinction has not been well-explored in areas of mathematics education below formal proof, where student reasoning and justification are also important. In this paper we draw on theories of cognitive load and syntactic versus semantic proof-production to explicate a definition for syntactic reasoning outside the context of formal proof, using illustrative examples from algebra. 
    more » « less