skip to main content


Title: Impact of Transitions between Online and Offline Learning During COVID-19 on Computational Curricular Reform: Student Perspective
Computational methods have gained importance and popularity in both academia and industry for materials research and development in recent years. Since 2014, our team at University of Illinois at Urbana-Champaign has consistently worked on reforming our Materials Science and Engineering curriculum by incorporating computational modules into all mandatory undergraduate courses. The outbreak of the COVID-19 pandemic disrupted education as on-campus resources and activities became highly restricted. Here we seek to investigate the impact of the university moving online in Spring 2020 and resuming in-person instructions in Fall 2021 on the effectiveness of our computational curricular reform from the students' perspective. We track and compare feedback from students in a representative course MSE 182 for their computational learning experience before, during and after the pandemic lockdown from 2019 to 2021. Besides, we survey all undergraduate students, for their online learning experiences during the pandemic. We find that online learning enhances the students' belief in the importance and benefits of computation in materials science and engineering, while making them less comfortable and confident to acquire skills that are relatively difficult. In addition, early computational learners are likely to experience more difficulties with online learning compared to students at late stages of their undergraduate education, regardless of the computational workload. Multiple reasons are found to limit the students' online computational learning, such as insufficient support from instructors and TAs, limited chances of peer communication and harder access to computational resources. Therefore, it is advised to guarantee more resources to students with novice computational skills regarding such limiting reasons in the future when online learning is applied.  more » « less
Award ID(s):
1846206
PAR ID:
10399336
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When schools and universities across the world transitioned online due to the COVID-19 pandemic, Ed+gineering, a National Science Foundation (NSF) project that partners engineering and education undergraduates to design and deliver engineering lessons to elementary students, also had to shift its hands-on lessons to a virtual format. Through the lens of social cognitive theory (SCT), this study investigates engineering and education students’ experiences during the shift to online instruction to understand how they perceived its influence on their learning. As a result of modifying their lessons for online delivery, students reported learning professional skills, including skills for teaching online and educational technology skills, as well as Science, Technology, Engineering, and Mathematics (STEM) content. Some also lamented missed learning opportunities, like practice presenting face-to-face. Students’ affective responses were often associated with preparing and delivering their lessons. SCT sheds light on how the mid-semester change in their environment, caused by the shift in designing and teaching from face-to-face to online, affected the undergraduate engineering and education students’ personal experiences and affect. Overall, the transition to fully online was effective for students’ perceived learning and teaching of engineering. Though students experienced many challenges developing multimedia content for delivering hands-on lessons online, they reported learning new skills and knowledge and expressed positive affective responses. From the gains reported by undergraduates, we believe that this cross-disciplinary virtual team assignment was a successful strategy for helping undergraduates build competencies in virtual skills. We posit that similar assignment structures and opportunities post-pandemic will also continue to prepare future students for the post-pandemic workplace.

     
    more » « less
  2. The purpose of our poster presentation is two-fold: 1) to provide an overview of our NSF project, Pandemic Impact: Undergraduates’ Social Capital and Engineering Professional Skills, and 2) to report our progress and preliminary quantitative findings. We hope to discuss our project and preliminary results with fellow engineering educators and receive feedback. The COVID-19 pandemic has impacted engineering education in multiple ways that will continue to be felt for years to come. One of the less understood ways the pandemic has continued to leave a residue on engineering education is how social distancing and online courses altered students’ professional development. Of particular concern are students who were either new to the institution or started their college education during the pandemic. These students have potentially limited opportunities to establish social relationships at their educational institutions compared to students who already developed such relationships when the pandemic-induced online learning took place. The differences in students’ social relationships can have other, more profound impacts on their undergraduate engineering experiences. Research has shown that students’ social relationships provide them with connections to resources and supports essential for navigating an engineering program and help them obtain more opportunities to practice non-technical professional skills [1], [2]. Although social distancing measures diminished and students returned primarily to in-person, the pandemic has altered the development of engineering students in ways not understood. In particular, understanding the nature of students’ social interactions on campus and the types of opportunities for professional development is essential so that instructors and campus staff can respond to the developmental needs of students. As a result, the overarching research question for our project is: How do engineering undergraduates leverage relationships (operationalized as social capital) to gain opportunities to develop professional skills? 
    more » « less
  3. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students’ perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students’ perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less
  4. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students' perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students' perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less
  5. Abstract

    Conducting ecological research in a way that addresses complex, real‐world problems requires a diverse, interdisciplinary and quantitatively trained ecology and environmental science workforce. This begins with equitably training students in ecology, interdisciplinary science, and quantitative skills at the undergraduate level. Understanding the current undergraduate curriculum landscape in ecology and environmental sciences allows for targeted interventions to improve equitable educational opportunities. Ecological forecasting is a sub‐discipline of ecology with roots in interdisciplinary and quantitative science. We use ecological forecasting to show how ecology and environmental science undergraduate curriculum could be evaluated and ultimately restructured to address the needs of the 21stcentury workforce. To characterize the current state of ecological forecasting education, we compiled existing resources for teaching and learning ecological forecasting at three curriculum levels: online resources; US university courses on ecological forecasting; and US university courses on topics related to ecological forecasting. We found persistent patterns (1) in what topics are taught to US undergraduate students at each of the curriculum levels; and (2) in the accessibility of resources, in terms of course availability at higher education institutions in the United States. We developed and implemented programs to increase the accessibility and comprehensiveness of ecological forecasting undergraduate education, including initiatives to engage specifically with Native American undergraduates and online resources for learning quantitative concepts at the undergraduate level. Such steps enhance the capacity of ecological forecasting to be more inclusive to undergraduate students from diverse backgrounds and expose more students to quantitative training.

     
    more » « less