skip to main content


This content will become publicly available on December 1, 2024

Title: Black spruce (Picea mariana) seed availability and viability in boreal forests after large wildfires
Abstract Key message Black spruce ( Picea mariana (Mill.) B.S.P.) has historically self-replaced following wildfire, but recent evidence suggests that this is changing. One factor could be negative impacts of intensifying fire activity on black spruce seed rain. We investigated this by measuring black spruce seed rain and seedling establishment. Our results suggest that increases in fire activity could reduce seed rain meaning reductions in black spruce establishment. Context Black spruce is an important conifer in boreal North America that develops a semi-serotinous, aerial seedbank and releases a pulse of seeds after fire. Variation in postfire seed rain has important consequences for black spruce regeneration and stand composition. Aims We explore the possible effects of changes in fire regime on the abundance and viability of black spruce seeds following a very large wildfire season in the Northwest Territories, Canada (NWT). Methods We measured postfire seed rain over 2 years at 25 black spruce-dominated sites and evaluated drivers of stand characteristics and environmental conditions on total black spruce seed rain and viability. Results We found a positive relationship between black spruce basal area and total seed rain. However, at high basal areas, this increasing rate of seed rain was not maintained. Viable seed rain was greater in stands that were older, closer to unburned edges, and where canopy combustion was less severe. Finally, we demonstrated positive relationships between seed rain and seedling establishment, confirming our measures of seed rain were key drivers of postfire forest regeneration. Conclusion These results indicate that projected increases in fire activity will reduce levels of black spruce recruitment following fire.  more » « less
Award ID(s):
1636476 2224776
NSF-PAR ID:
10399387
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Forest Science
Volume:
80
Issue:
1
ISSN:
1297-966X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The spatial overlap of multiple ecological disturbances in close succession has the capacity to alter trajectories of ecosystem recovery. Widespread bark beetle outbreaks and wildfire have affected many forests in western North America in the past two decades in areas of important habitat for native ungulates. Bark beetle outbreaks prior to fire may deplete seed supply of the host species, and differences in fire‐related regeneration strategies among species may shift the species composition and structure of the initial forest trajectory. Subsequent browsing of postfire tree regeneration by large ungulates, such as elk (Cervus canadensis), may limit the capacity for regeneration to grow above the browse zone to form the next forest canopy. Five stand‐replacing wildfires burned ~60,000 ha of subalpine forest that had previously been affected by severe (>90% mortality) outbreaks of spruce beetle (SB,Dendroctonus rufipennis) in Engelmann spruce (Picea engelmannii) in 2012–2013 in southwestern Colorado. Here we examine the drivers of variability in abundance of newly established conifer tree seedlings [spruce and subalpine fir (Abies lasiocarpa)] and resprouts of quaking aspen (Populus tremuloides) following the short‐interval sequence of SB outbreaks and wildfire (2–8 yr between SB outbreak and fire) at sites where we previously reconstructed severities of SB and fire. We then examine the implications of ungulate browsing for forest recovery. We found that abundances of postfire spruce seedling establishment decreased substantially in areas of severe SB outbreak. Prolific aspen resprouting in stands with live aspen prior to fire will favor an initial postfire forest trajectory dominated by aspen. However, preferential browsing of postfire aspen resprouts by ungulates will likely slow the rate of canopy recovery but browsing is unlikely to alter the species composition of the future forest canopy. Collectively, our results show that SB outbreak prior to fire increases the vulnerability of spruce–fir forests to shifts in forest type (conifer to aspen) and physiognomic community type (conifer forest to non‐forest). By identifying where compounded disturbance interactions are likely to limit recovery of forests or tree species, our findings are useful for developing adaptive management strategies in the context of warming climate and shifting disturbance regimes.

     
    more » « less
  2. Abstract

    Understanding potential limitations to tree regeneration is essential as rates of tree mortality increase in response to direct (extreme drought) and indirect (bark beetle outbreaks, wildfire) effects of a warming climate. Seed availability is increasingly recognized as an important limitation for tree regeneration. High variability in seed cone production is a trait common among many northern temperate conifers, but few studies examine the determinants of individual tree cone production and how they vary with stand structure. In subalpine forests in the southern Rocky Mountains, USA, we monitored >1600Picea engelmannii(Engelmann spruce) andAbies lasiocarpa(subalpine fir) trees for cone presence (an indicator of reproductive maturity) and a subset of those trees for cone abundance (an indicator of seed production) from 2016 to 2018. We constructed mixed models to test how individual tree cone presence and cone abundance were affected by tree size and age as well as forest attributes at the neighborhood‐ and stand‐scales. The probability of cone presence and cone abundance increased with tree size and age forA. lasiocarpaandP. engelmannii. The youngest ages of trees with cones present were more than 100 yr later for individuals in high basal area (BA) stands (>65 m2/ha) relative to low BA stands (<25 m2/ha).P. engelmanniiproduced many more cones thanA. lasiocarpaat similar sizes, especially in young, low BA stands. Our findings reveal how differences in tree sizes and stand structures typically associated with time since last disturbance can affect seed production patterns for decades to well over a century. The consistent regional pattern of earlier and more abundant postfire establishment ofP. engelmannniivs. the delayed postfire establishment byA. lasiocarpamay be partially explained by species’ differences in cone abundance by stand structure. The increasing loss of large, dominant cone‐producing trees will significantly reduce seed production to support future tree regeneration and maintain forest cover. However, seed availability and resilience following disturbances may be less limiting than expected for species likeP. engelmanniithat have the capacity to produce more cones in open‐canopy forests, such as recently disturbed areas.

     
    more » « less
  3. Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years. 
    more » « less
  4. Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.

     
    more » « less
  5. Human-altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance-prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter-dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease-fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD-affected forests, we monitored seedling abundances and survival over eight years. With pre- and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our results indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter-dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human-altered regimes where asexual persistence may be predicted to be a beneficial life history strategy. 
    more » « less