Theory of Protein Charge Transfer: Electron Transfer between Tryptophan Residue and Active Site of Azurin
- Award ID(s):
- 2154465
- PAR ID:
- 10399487
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 126
- Issue:
- 49
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 10360 to 10373
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Protein fold and slow relaxation times impose constraints on configurations sampled by the protein. Incomplete sampling leads to the violation of fluctuation-dissipation relations underlying the traditional theories of electron transfer. The effective reorganization energy of electron transfer is strongly reduced thus leading to lower barriers and faster rates (catalytic effect). Electrochemical kinetic measurements support low activation barriers for protein electron transfer. The distance dependence of the rate constant displays a crossover from a plateau at short distances to a long-distance exponential decay. The transition between these two regimes is controlled by the protein dynamics.more » « less
-
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses the mechanisms of how small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms and nonequilibrium population of donor-acceptor vibrations lead to a universal phenomenology of separation between the Stokes-shift and variance reorganization energies of electron transfer.more » « less
-
Existing transfer technologies in the construction of film-based electronics and devices are deeply established in the framework of native solid substrates. Here, we report a capillary approach that enables a fast, robust, and reliable transfer of soft films from liquid in a defect-free manner. This capillary transfer is underpinned by the transfer front of dynamic contact among receiver substrate, liquid, and film, and can be well controlled by a selectable motion direction of receiver substrates at a high speed. We demonstrate in extensive experiments, together with theoretical models and computational analysis, the robust capabilities of the capillary transfer using a versatile set of soft films with a broad material diversity of both film and liquid, surface-wetting properties, and complex geometric patterns of soft films onto various solid substrates in a deterministic manner.more » « less
An official website of the United States government

