Abstract Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli‐responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors. In contrast, when a droplet of the same solvent is placed on the film, it curls away from the nanowire side due to nanowire‐induced capillary forces that cause unequal swelling. This characteristic curling deformation is shown to be reversible and can be optimized to match curved substrates, maximizing adhesive shear forces. By using chemical modification, the LCE nanowire films can be given underwater superoleophobicity, enabling oil repellency under a range of harsh conditions. This is combined with the nanowire‐induced frictional asymmetry and the reversible shape deformation to create an underwater droplet mixing robot, capable of performing chemical reactions in aqueous environments. These findings demonstrate the potential of nanowire‐augmented LCE films for advanced applications in soft robotics, adaptive adhesion, and easy chemical modification, with implications for designing responsive materials that integrate mechanical flexibility with surface functionality. 
                        more » 
                        « less   
                    
                            
                            Capillary transfer of soft films
                        
                    
    
            Existing transfer technologies in the construction of film-based electronics and devices are deeply established in the framework of native solid substrates. Here, we report a capillary approach that enables a fast, robust, and reliable transfer of soft films from liquid in a defect-free manner. This capillary transfer is underpinned by the transfer front of dynamic contact among receiver substrate, liquid, and film, and can be well controlled by a selectable motion direction of receiver substrates at a high speed. We demonstrate in extensive experiments, together with theoretical models and computational analysis, the robust capabilities of the capillary transfer using a versatile set of soft films with a broad material diversity of both film and liquid, surface-wetting properties, and complex geometric patterns of soft films onto various solid substrates in a deterministic manner. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1728149
- PAR ID:
- 10136122
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 10
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 5210-5216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Air–water interfacial adsorption complicates per‐ and polyfluoroalkyl substance (PFAS) transport in vadose zones. Air–water interfaces can arise from pendular rings between soil grains and thin water films on grain surfaces, the latter of which account for over 90% of the total air–water interfaces for most field‐relevant conditions. However, whether all thin‐water‐film air–water interfaces are accessible by PFAS and how mass‐transfer limitations in thin water films control PFAS transport in soils remain unknown. We develop a pore‐scale model that represents both PFAS adsorption at bulk capillary and thin‐water‐film air–water interfaces and the mass‐transfer processes between bulk capillary water and thin water films (including advection, aqueous diffusion, and surface diffusion along air–water interfaces). We apply the pore‐scale model to a series of numerical experiments—constrained by experimentally determined hydraulic parameters and air–water interfacial area data sets—to examine the impact of thin‐water‐film mass‐transfer limitations in a sand medium. Our analyses suggest: (a) The mass‐transfer limitations between bulk capillary water and thin water films inside a pore are negligible due to surface diffusion. (b) However, strong mass‐transfer limitations arise in thin water films of pore clusters where pendular rings disconnect. The mass‐transfer limitations lead to early arrival and long tailing behaviors even if surface diffusion is present. (c) Despite the mass‐transfer limitations, all air–water interfaces in the thin water films were accessed by PFAS under the simulated conditions. These findings highlight the importance of incorporating the thin‐water‐film mass‐transfer limitations and surface diffusion for modeling PFAS transport in vadose zones.more » « less
- 
            null (Ed.)A fibre withdrawn from a bath of a dilute particulate suspension exhibits different coating regimes depending on the physical properties of the fluid, the withdrawal speed, the particle sizes and the radius of the fibre. Our experiments indicate that only the liquid without particles is entrained for thin coating films. Beyond a threshold capillary number, the fibre is coated by a liquid film with entrained particles. We systematically characterize the role of the capillary number, the particle size and the fibre radius on the threshold speed for particle entrainment. We discuss the boundary between these two regimes and show that the thickness of the liquid film at the stagnation point controls the entrainment process. The radius of the fibre provides a new degree of control in capillary filtering, allowing greater control over the size of the particles entrained in the film.more » « less
- 
            null (Ed.)Metal films of nanoscale thickness, deposited on substrates and exposed to laser heating, provide systems that involve several interesting multiphysics effects. In addition to fluid mechanical aspects associated with a free boundary setup, other relevant physical effects include phase change, thermal flow, and liquid–solid interactions. Such films are challenging to model, in particular because inertial effects may be relevant, and large contact angles require care when considering the long-wave formulation. Applications of nanoscale metal films are numerous, and the materials science community is actively pursuing more complex setups involving templated films and substrates, bimetallic films and alloys, and a variety of elemental film geometries. The goal of this review is to discuss our current understanding of thin metal film systems, while also providing an overview of the challenges in this research area, which stands at the intersection of fluid mechanics, materials science, and thermal physics.more » « less
- 
            Capillary origami takes advantage of the surface forces of a liquid drop to assemble thin film structures. After a structure is assembled, the drop then evaporates away. The transient nature of the liquid drop means that the creation of dry and stable structures is impossible. Work presented in this paper shows that adhesion is, in fact, a key tool that enables the creation of stable, complex, capillary assembled origami structures, rather than a problem to be avoided. Here, polydimethylsiloxane thin films were used in several simple experiments designed to identify the balance between substrate–film adhesion and film–film adhesion in the context of capillary assembly. We then demonstrate how directional adhesion can be used to direct film peeling in order to create non-trivial patterned folds after a fluid drop is deposited. A minimal complex structure, a “double-fold” was created to demonstrate how adhesion uniquely facilitates multiple-step capillary assembly. Finally, a familiar “origami airplane” was created with these methods, demonstrating that adhesion aided capillary origami can be used to assemble complex, functional structures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
