skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
Abstract. Near-surface air temperature (Ta) is a key variable in global climatestudies. A global gridded dataset of daily maximum and minimum Ta (Tmax⁡ and Tmin⁡) is particularly valuable and critically needed inthe scientific and policy communities but is still not available. In this paper, we developed a global dataset of daily Tmax⁡ and Tmin⁡at 1 km resolution over land across 50∘ S–79∘ N from 2003 to 2020 through the combined use of ground-station-basedTa measurements and satellite observations (i.e., digital elevation model and land surface temperature) via a state-of-the-artstatistical method named Spatially Varying Coefficient Models with Sign Preservation (SVCM-SP). The root mean square errors in our estimates rangedfrom 1.20 to 2.44 ∘C for Tmax⁡ and 1.69 to 2.39 ∘C for Tmin⁡. We found that the accuracies were affectedprimarily by land cover types, elevation ranges, and climate backgrounds. Our dataset correctly represents a negative relationship betweenTa and elevation and a positive relationship between Ta and land surface temperature; it captured spatial and temporalpatterns of Ta realistically. This global 1 km gridded daily Tmax⁡ and Tmin⁡ dataset is the first of its kind, and weexpect it to be of great value to global studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting. The data havebeen published by Iowa State University at https://doi.org/10.25380/iastate.c.6005185 (Zhang and Zhou, 2022).  more » « less
Award ID(s):
2041859
PAR ID:
10399497
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Earth System Science Data
Volume:
14
Issue:
12
ISSN:
1866-3516
Page Range / eLocation ID:
5637 to 5649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gridded air temperature data are required in various fields such as ecological modeling, weather forecasting, and surface energy balance assessment. In this work, a piecewise multiple linear regression model is used to produce high‐resolution (250 m) daily maximum (Tmax), minimum (Tmin), and mean (Tmean) near‐surface air temperature maps for the State of Hawaiʻi for a 32‐year period (1990–2021). Multiple meteorological and geographical variables such as the elevation, daily rainfall, coastal distance index, leaf area index, albedo, topographic position index, and wind speed are independently tested to determine the most well‐suited predictor variables for optimal model performance. During the mapping process, input data scarcity is addressed first by gap‐filling critical stations at high elevation using a predetermined linear relationship with other strongly‐correlated stations, and second, by supplementing the training dataset with station data from neighboring islands. Despite the numerous covariates physically linked to temperature, the most parsimonious model selection uses elevation as its sole predictor, and the inclusion of the additional variables results in increased cross‐validation errors. The mean absolute error of resultant estimatedTmaxandTminmaps over the Hawaiian Islands from 1990 to 2021 is 1.7°C and 1.3°C, respectively. Corresponding bias values are 0.01°C and −0.13°C, respectively for the same variables. Overall, the results show the proposed methodology can robustly generate daily air temperature maps from point‐scale measurements over complex topography. 
    more » « less
  2. Abstract Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However,in-situobservations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset ofin-situobservations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost. 
    more » « less
  3. Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate ResolutionImaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution withglobal coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination,indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporalgap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the datapre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In thespatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in eachpixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for eachday. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values inthe original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by largeareas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation withdifferent missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error(RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime andmid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling,and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhanget al., 2021). 
    more » « less
  4. This dataset presents spatiotemporal dynamics of phosphorus (P) fertilizer management (application rate, timing, and method) at a 4km × 4 km resolution in agricultural land of the contiguous U.S. from 1850 to 2022. By harmonizing multiple data sources, we reconstructed the county-level crop-specific P fertilizer use history. We then spatialized and resampled P fertilizer use data to 4 km × 4 km gridded maps based on historical U.S. cropland distribution and crop type database developed by Ye et al. (2024). This dataset contains (1) P fertilizer total consumption and mean application rate at the national level (Tabular); (2) P fertilizer consumption of 11 crops at the state level (Tabular); (3) P fertilizer consumption of permanent pasture (Tabular); (4) P fertilizer consumption of non-farm at the state level (Tabular); (5) P fertilizer application rate of 11 crop types at the state level (Tabular); (6) P fertilizer application rate of 11 crop types at the county level (Tabular); (7) P fertilizer application timing ratio at the state level (Tabular); (8) P fertilizer application method ratio at the state level (Tabular); (9) Gridded maps of P fertilizer application rate based on state-level data; (10) and (11) Gridded maps of P fertilizer application rate based on county-level data; (12)-(20) Gridded maps of P fertilizer application rate for each crop. A detailed description of the data development processes, key findings, and uncertainties can be found in Cao, P., Yi, B., Bilotto, F., Gonzalez Fischer, C., Herrero, M., Lu, C.: Crop-specific Management History of Phosphorus fertilizer input (CMH-P) in the croplands of United States: Reconciliation of top-down and bottom-up data sources, is under review for the journal Earth System Science Data (ESSD). https://essd.copernicus.org/preprints/essd-2024-67/#discussion.  This work is supported by the Iowa Nutrient Research Center, the ISU College of Liberal Arts and Sciences Dean's Faculty Fellowship, and NSF CAREER grant (1945036). 
    more » « less
  5. Abstract Among quantities of interest in paleoclimate, the mean annual air temperature, Ta, directly over the surface looms prominently. Most geologic estimates of past temperatures from continental regions, however, quantify temperatures of the soil or other material below the surface, Ts, and in general Ta < Ts. Both theory and data from the FLUXNET2015 data set of surface energy balance indicate systematic dependences of temperature differences ΔT = Ts − Ta and also of Bowen ratios—ratios of sensible to latent heat fluxes from surface to the atmosphere—on the nature of the land-surface cover. In cold regions, with mean annual temperatures ≲5 °C, latent heat flux tends to be small, and values of ΔT can be large, 3–5 °C or larger. Over wet surfaces, latent heat fluxes dominate sensible heat fluxes, and values of both ΔT and Bowen ratios commonly are small. By contrast, over arid surfaces that provide only limited moisture to the overlying atmosphere, the opposite holds. Both theory and observation suggest the following, albeit approximate, mean annual values of ΔT: for wetlands, 1 °C; forests, 1 ± 1 °C; shrublands, 3–4 °C; savannas, 3.5 °C < ΔT < 5.5 °C; grasslands, 1 °C where wet to 3 °C where arid; and deserts, 4–6 °C. As geological tools for inferring past land-surface conditions improve, these approximate values of ΔT will allow geologic estimates of past mean annual surface temperatures, Ts, to be translated into estimates of past mean annual air temperatures, Ta. 
    more » « less