Abstract. Near-surface air temperature (Ta) is a key variable in global climatestudies. A global gridded dataset of daily maximum and minimum Ta (Tmax and Tmin) is particularly valuable and critically needed inthe scientific and policy communities but is still not available. In this paper, we developed a global dataset of daily Tmax and Tminat 1 km resolution over land across 50∘ S–79∘ N from 2003 to 2020 through the combined use of ground-station-basedTa measurements and satellite observations (i.e., digital elevation model and land surface temperature) via a state-of-the-artstatistical method named Spatially Varying Coefficient Models with Sign Preservation (SVCM-SP). The root mean square errors in our estimates rangedfrom 1.20 to 2.44 ∘C for Tmax and 1.69 to 2.39 ∘C for Tmin. We found that the accuracies were affectedprimarily by land cover types, elevation ranges, and climate backgrounds. Our dataset correctly represents a negative relationship betweenTa and elevation and a positive relationship between Ta and land surface temperature; it captured spatial and temporalpatterns of Ta realistically. This global 1 km gridded daily Tmax and Tmin dataset is the first of its kind, and weexpect it to be of great value to global studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting. The data havebeen published by Iowa State University at https://doi.org/10.25380/iastate.c.6005185 (Zhang and Zhou, 2022).
more »
« less
Daily station-level records of air temperature, snow depth, and ground temperature in the Northern Hemisphere
Abstract Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However,in-situobservations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset ofin-situobservations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost.
more »
« less
- PAR ID:
- 10515650
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate ResolutionImaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution withglobal coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination,indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporalgap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the datapre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In thespatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in eachpixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for eachday. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values inthe original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by largeareas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation withdifferent missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error(RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime andmid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling,and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhanget al., 2021).more » « less
-
Abstract The interior of Dronning Maud Land (DML) in East Antarctica is one of the most data-sparse regions of Antarctica for studying climate change. A monthly mean near-surface temperature dataset for the last 30 years has been compiled from the historical records from automatic weather stations (AWSs) at three sites in the region (Mizuho, Relay Station, and Dome Fuji). Multiple AWSs have been installed along the route to Dome Fuji since the 1990s, and observations have continued to the present day. The use of passive-ventilated radiation shields for the temperature sensors at the AWSs may have caused a warm bias in the temperature measurements, however, due to insufficient ventilation in the summer, when solar radiation is high and winds are low. In this study, these warm biases are quantified by comparison with temperature measurements with an aspirated shield and subsequently removed using a regression model. Systematic error resulting from changes in the sensor height due to accumulating snow was insignificant in our study area. Several other systematic errors occurring in the early days of the AWS systems were identified and corrected. After the corrections, multiple AWS records were integrated to create a time series for each station. The percentage of missing data over the three decades was 21% for Relay Station and 28% for Dome Fuji. The missing rate at Mizuho was 49%, more than double that at Relay Station. These new records allow for the study of temperature variability and change in DML, where climate change has so far been largely unexplored. Significance StatementAntarctic climate change has been studied using temperature data at staffed stations. The staffed stations, however, are mainly located on the Antarctic Peninsula and in the coastal regions. Climate change is largely unknown in the Antarctic plateau, particularly in the western sector of the East Antarctic Plateau in areas such as the interior of Dronning Maud Land (DML). To fill the data gap, this study presents a new dataset of monthly mean near-surface climate data using historical observations from three automatic weather stations (AWSs). This dataset allows us to study temperature variability and change over a data-sparse region where climate change has been largely unexplored.more » « less
-
Abstract Gridded air temperature data are required in various fields such as ecological modeling, weather forecasting, and surface energy balance assessment. In this work, a piecewise multiple linear regression model is used to produce high‐resolution (250 m) daily maximum (Tmax), minimum (Tmin), and mean (Tmean) near‐surface air temperature maps for the State of Hawaiʻi for a 32‐year period (1990–2021). Multiple meteorological and geographical variables such as the elevation, daily rainfall, coastal distance index, leaf area index, albedo, topographic position index, and wind speed are independently tested to determine the most well‐suited predictor variables for optimal model performance. During the mapping process, input data scarcity is addressed first by gap‐filling critical stations at high elevation using a predetermined linear relationship with other strongly‐correlated stations, and second, by supplementing the training dataset with station data from neighboring islands. Despite the numerous covariates physically linked to temperature, the most parsimonious model selection uses elevation as its sole predictor, and the inclusion of the additional variables results in increased cross‐validation errors. The mean absolute error of resultant estimatedTmaxandTminmaps over the Hawaiian Islands from 1990 to 2021 is 1.7°C and 1.3°C, respectively. Corresponding bias values are 0.01°C and −0.13°C, respectively for the same variables. Overall, the results show the proposed methodology can robustly generate daily air temperature maps from point‐scale measurements over complex topography.more » « less
-
Abstract While the Lomb–Scargle periodogram is foundational to astronomy, it has a significant shortcoming: the variance in the estimated power spectrum does not decrease as more data are acquired. Statisticians have a 60 yr history of developing variance-suppressing power spectrum estimators, but most are not used in astronomy because they are formulated for time series with uniform observing cadence and without seasonal or daily gaps. Here we demonstrate how to apply the missing-data multitaper power spectrum estimator to spacecraft data with uniform time intervals between observations but missing data during thruster fires or momentum dumps. TheF-test for harmonic components may be applied to multitaper power spectrum estimates to identify statistically significant oscillations that would not rise above a white noise–based false alarm probability. Multitapering improves the dynamic range of the power spectrum estimate and suppresses spectral window artifacts. We show that the multitaper–F-test combination applied to Kepler observations of KIC 6102338 detects differential rotation without requiring iterative sinusoid fitting and subtraction. Significant signals reside at harmonics of both fundamental rotation frequencies and suggest an antisolar rotation profile. Next we use the missing-data multitaper power spectrum estimator to identify the oscillation modes responsible for the complex “scallop-shell” shape of the K2 light curve of EPIC 203354381. We argue that multitaper power spectrum estimators should be used for all time series with regular observing cadence.more » « less