skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Convergence Zones due to Lagrangian Residual Flow in Tidally Driven Estuaries
Abstract Buoyant material, such as floating debris, marine organisms, and spilled oil, is aggregated and trapped within estuaries. Traditionally, the aggregation of buoyant material is assumed to be a consequence of converging Eulerian surface currents, often associated with lateral (cross-estuary) density gradients that drive baroclinic lateral circulations. This study explores an alternative aggregation mechanism due to tidally driven Lagrangian residual circulations without Eulerian convergence zones and without lateral density variation. In a tidally driven estuary, the depth-dependent tidal phase of the lateral velocity varies across the estuary. This study demonstrates that the lateral movement of surface trapped material follows the tidal phase, resulting in a lateral Lagrangian residual circulation known as Stokes drift for small-amplitude motions. For steeper bathymetry, the lateral change in tidal phase is greater and the corresponding lateral Lagrangian residual flow faster. At local depth extrema, e.g., in the thalweg, depth does not vary laterally, so that the associated tidal phase is laterally constant. Therefore, the Stokes drift is weak near depth extrema resulting in Lagrangian convergence zones where buoyant material concentrates. These ideas are evaluated employing an idealized analytic model in which the along-estuary tidal flow is driven by an imposed barotropic pressure gradient, whereas cross-estuary flow is induced by the Coriolis force. Model results highlight that convergence zones due to Lagrangian residual velocities are efficient in forming persistent aggregation regions of buoyant material along the estuary. Significance Statement Our study focuses on the aggregation of buoyant material (e.g., debris, oil, organisms) in estuaries. Traditionally, the aggregation of buoyant material is assumed to be a consequence of converging Eulerian surface currents, often associated with lateral (cross-estuary) density gradients that drive baroclinic lateral circulations. Our study explores an alternative aggregation mechanism due to tidally driven Lagrangian residual circulations without Eulerian convergence zones and without lateral density variation. Our results highlight that convergence zones due to Lagrangian residual velocities are efficient in forming persistent aggregation regions of buoyant material along the estuary.  more » « less
Award ID(s):
2148375 2148370
PAR ID:
10399507
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
53
Issue:
2
ISSN:
0022-3670
Page Range / eLocation ID:
423 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estuaries, as connectors between land and ocean, have complex interactions of river and tidal flows that affect the transport of buoyant materials like floating plastics, oil spills, organic matter, and larvae. This study investigates surface-trapped buoyant particle transport in estuaries by using idealized and realistic numerical simulations along with a theoretical model. While river discharge and estuarine exchange flow are usually expected to export buoyant particles to the ocean over subtidal timescales, this study reveals a ubiquitous physical transport mechanism that causes retention of buoyant particles in estuaries. Tidally varying surface convergence fronts affect the aggregation of buoyant particles, and the coupling between particle aggregation and oscillatory tidal currents leads to landward transport at subtidal timescales. Landward transport and retention of buoyant particles is greater in small estuaries, while large estuaries tend to export buoyant particles to the ocean. A dimensionless width parameter incorporating the tidal radian frequency and lateral velocity distinguishes small and large estuaries at a transitional value of around 1. Additionally, higher river flow tends to shift estuaries toward seaward transport and export of buoyant particles. These findings provide insights into understanding the distribution of buoyant materials in estuaries and predicting their fate in the land–sea exchange processes. 
    more » « less
  2. Abstract Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal. 
    more » « less
  3. The drivers of the tidal and residual flows in estuaries can vary spatially and temporally due to geomorphic complexities, fortnightly tides, and climatic influences. In this paper, we explore the mechanisms that give rise to the circulation patterns in Frenchman Bay, Maine, on the Eastern Coast of the USA, under varying freshwater input conditions and fortnightly tidal phases, using idealized simulations from a high-resolution, three-dimensional numerical model. The results of the simulations at the tidal timescale reveal a tidal asymmetry in vorticity, where vorticity generated during flood tide is not spun-down during the subsequent ebb. This asymmetry prompts the investigation of the residual circulation in the bay which is characterized by large tidal residual eddies. These eddies are found to persist in the depth-averaged residual flow regardless of the freshwater input or tidal phase, leading to the conclusion that the eddies are “geomorphically-constrained” in the bay. Analysis of the horizontal momentum terms and a simulation performed without Coriolis forcing demonstrates that the tidal stress terms predominantly balance the barotropic pressure gradient to give rise to the eddy patterns, while the Coriolis force acts to strengthen their vorticity. The eddies create a laterally sheared residual flow structure with depth, however the flow is more vertically sheared during the neap tide when the baroclinic pressure gradient plays a larger role. These findings demonstrate the persistence of tidal residual eddies regardless of freshwater input or fortnightly tidal phase in a geomorphically complex deglaciated coastal bay with low freshwater input. 
    more » « less
  4. Abstract The salt balance in estuaries is maintained by the outflow from the river, which removes salt from the estuary, and dispersive processes, which drive downgradient fluxes bringing salt into the estuary. We analyzed the salt fluxes in a realistic model of the North River, a tidal salt marsh estuary, using a quasi-Lagrangian moving plane reference based on the theory of Dronkers and van de Kreeke. Our study confirms their theoretical finding that in a plane moving with the tides, all landward salt flux results directly from shear dispersion, that is, the spatial correlation between cross-sectional variations in velocity and salinity. We separated cross-sectional variations in velocity and salinity not only based on their lateral and vertical components but also by distinct regions of the cross section: the main channel and the marsh. In this way, we quantified the salt flux contributions from vertical and lateral shear dispersion, as well as from trapping—the salt flux due to the difference between the mean velocity and salinity of the main channel compared to the marsh. Trapping accounted for up to half of the total landward salt flux in the estuary during spring tides but decreased to about one-quarter during neap tides. Within the channel, the primary mode of dispersion shifted from lateral shear dispersion due to flow separation during spring tides to vertical shear dispersion due to tidal straining during neap tides. These results demonstrate the important role of topographically induced dispersion on maintaining the salt balance, particularly in tidally dominated estuaries. 
    more » « less
  5. Abstract In classic models of the tidally averaged gravitationally driven estuarine circulation, denser salty oceanic water moves up the estuary near the bottom, while less dense riverine water flows toward the ocean near the surface. Traditionally, it is assumed that the associated pressure gradient forces and salt advection are balanced by vertical mixing. This study, however, demonstrates that lateral (across the estuary width) transport processes are essential for maintaining the estuarine circulation. This is because for realistic estuarine bathymetry, the depth-integrated salt transport up the estuary is enhanced in the deeper estuary channel. A closed salt budget then requires the lateral transport of this excess salt in the deeper channel toward the estuarine flanks. To understand how such lateral transport affects the estuarine salt and momentum balances, we devise an idealized model with explicit lateral transport focusing on tidally averaged lateral mixing effects. Solutions for the along-estuary velocity and salinity are nondimensionalized to depend only on one single nondimensional parameter, referred to as the Fischer number, which describes the relative importance of lateral to vertical tidal mixing. For relatively strong lateral tidal mixing (greater Fischer number), salinity and velocity variations are predominantly vertical. For relatively weak lateral tidal mixing (smaller Fischer number), salinity and velocity variations are predominantly lateral. Overall, lateral transport greatly affects the estuarine circulation and controls the estuarine salinity intrusion length, which is demonstrated to scale inversely with the Fischer number. 
    more » « less