skip to main content


Title: High thermal insulation properties of A 2 FeCoO 6−δ (A = Ca, Sr)
Materials with low thermal conductivity are essential to providing thermal insulation to many technological systems, such as electronics, thermoelectrics and aerospace devices. Here, we report ultra-low thermal conductivity of two oxide materials. Sr 2 FeCoO 6−δ has a perovskite-type structure with oxygen vacancies. It shows a thermal conductivity of 0.5 W m −1 K −1 , which is lower than those reported for perovskite oxides. The incorporation of calcium to form Ca 2 FeCoO 6−δ , leads to a structural change and the formation of different coordination geometries around the transition metals. This structural transformation results in a remarkable enhancement of the thermal insulation properties, showing the ultra-low thermal conductivity of 0.05 W m −1 K −1 , which is one of the lowest values found among solid materials to date. A comparison to previously reported perovskite oxides, which show significantly inferior thermal insulation compared to our materials, points to the effect of oxygen-vacancies and their ordering on thermal conductivity.  more » « less
Award ID(s):
1943085
PAR ID:
10399625
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
35
ISSN:
2050-7526
Page Range / eLocation ID:
12569 to 12573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we investigate the utility of Ca2FeMnO6-δand Sr2FeMnO6-δas materials with low thermal conductivity, finding potential applications in thermoelectrics, electronics, solar devices, and gas turbines for land and aerospace use. These compounds, characterized as oxygen-deficient perovskites, feature distinct vacancy arrangements. Ca2FeMnO6-δadopts a brownmillerite-type orthorhombic structure with ordered vacancy arrangement, while Sr2FeMnO6-δadopts a perovskite cubic structure with disordered vacancy distribution. Notably, both compounds exhibit remarkably low thermal conductivity, measuring below 0.50 Wm−1K−1. This places them among the materials with the lowest thermal conductivity reported for perovskites. The observed low thermal conductivity is attributed to oxygen vacancies and phonon scattering. Interestingly as SEM images show the smaller grain size, our findings suggest that creating vacancies and lowering the grain size or increasing the grain boundaries play a crucial role in achieving such low thermal conductivity values. This characteristic enhances the potential of these materials for applications where efficient heat dissipation, safety, and equipment longevity are paramount.

     
    more » « less
  2. Abstract

    Ultrafast time‐domain thermoreflectance (TDTR) is utilized to extract the through‐plane thermal conductivity (ΛLSCO) of epitaxial La0.5Sr0.5CoO3−δ(LSCO) of varying thickness (<20 nm) on LaAlO3and SrTiO3substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room‐temperatureΛLSCOof LSCO on both substrates (1.7 W m−1K−1) are nearly a factor of four lower than that of bulk single‐crystal LSCO (6.2 W m−1K−1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m−1K−1for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass‐like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measuredΛLSCOis rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution toΛLSCOalong the through‐plane direction for these ultrathin LSCO films on insulating substrates.

     
    more » « less
  3. unknown (Ed.)

    The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to be 0.574W/m/K, exhibiting a notable thermal insulation property.

     
    more » « less
  4. Perovskite oxides are gaining significant attention for use in next-generation magnetic and ferroelectric devices due to their exceptional charge transport properties and the opportunity to tune the charge, spin, lattice, and orbital degrees of freedom. Interfaces between perovskite oxides, exemplified by La1−xSrxCoO3−δ/La1−xSrxMnO3−δ (LSCO/LSMO) bilayers, exhibit unconventional magnetic exchange switching behavior, offering a pathway for innovative designs in perovskite oxide-based devices. However, the precise atomic-level stoichiometric compositions and chemophysical properties of these interfaces remain elusive, hindering the establishment of surrogate design principles. We leverage first-principles simulations, evolutionary algorithms, and neural network searches with on-the-fly uncertainty quantification to design deep learning model ensembles to investigate over 50,000 LSCO/LSMO bilayer structures as a function of oxygen deficiency (δ) and strontium concentration (x). Structural analysis of the low-energy interface structures reveals that preferential segregation of oxygen vacancies toward the interfacial La0.7Sr0.3CoO3−δ layers causes distortion of the CoOx polyhedra and the emergence of magnetically active Co2+ ions. At the same time, an increase in the Sr concentration and a decrease in oxygen vacancies in the La0.7Sr0.3MnO3−δ layers tend to retain MnO6 octahedra and promote the formation of Mn4+ ions. Electronic structure analysis reveals that the nonuniform distributions of Sr ions and oxygen vacancies on both sides of the interface can alter the local magnetization at the interface, showing a transition from ferromagnetic (FM) to local antiferromagnetic (AFM) or ferrimagnetic regions. Therefore, the exotic properties of La1−xSrxCoO3−δ/La1−xSrxMnO3−δ are strongly coupled to the presence of hard/soft magnetic layers, as well as the FM to AFM transition at the interface, and can be tuned by changing the Sr concentration and oxygen partial pressure during growth. These insights provide valuable guidance for the precise design of perovskite oxide multilayers, enabling tailoring of their functional properties to meet specific requirements for various device applications. 
    more » « less
  5. Abstract

    Lattice defects typically reduce lattice thermal conductivity, which has been widely exploited in applications such as thermoelectric energy conversion. Here, an anomalous dependence of the lattice thermal conductivity on point defects is demonstrated in epitaxial WO3thin films. Depending on the substrate, the lattice of epitaxial WO3expands or contracts as protons are intercalated by electrolyte gating or oxygen vacancies are introduced by adjusting growth conditions. Surprisingly, the observed lattice volume, instead of the defect concentration, plays the dominant role in determining the thermal conductivity. In particular, the thermal conductivity increases significantly with proton intercalation, which is contrary to the expectation that point defects typically lower the lattice thermal conductivity. The thermal conductivity can be dynamically varied by a factor of1.7 via electrolyte gating, and tuned over a larger range, from 7.8 to 1.1 W m−1K−1, by adjusting the oxygen pressure during film growth. The electrolyte‐gating‐induced changes in thermal conductivity and lattice dimensions are reversible through multiple cycles. These findings not only expand the basic understanding of thermal transport in complex oxides, but also provide a path to dynamically control the thermal conductivity.

     
    more » « less