skip to main content


Title: Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling
Abstract

Radiative cooling is an emerging cooling technology that can passively release heat to the environment. To obtain a subambient cooling effect during the daytime, chemically engineered structural materials are widely explored to simultaneously reject sunlight and preserve strong thermal emission. However, many previously reported fabrication processes involve hazardous chemicals, which can hinder a material's ability to be mass produced. In order to eliminate the hazardous chemicals used in the fabrication of previous works, this article reports a white polydimethylsiloxane (PDMS) sponge fabricated by a sustainable process using microsugar templates. By substituting the chemicals for sugar, the manufacturing procedure produces zero toxic waste and can also be endlessly recycled via methods widely used in the sugar industry. The obtained porous PDMS exhibits strong visible scattering and thermal emission, resulting in an efficient temperature reduction of 4.6 °C and cooling power of 43 W m−2under direct solar irradiation. In addition, due to the air‐filled voids within the PDMS sponge, its thermal conductivity remains low at 0.06 W (m K)−1. This unique combination of radiative cooling and thermal insulation properties can efficiently suppress the heat exchange with the solar‐heated rooftop or the environment, representing a promising future for new energy‐efficient building envelope material.

 
more » « less
NSF-PAR ID:
10378348
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
8
Issue:
23
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heat dissipation is a severe barrier for ever‐smaller and more functionalized electronics, necessitating the continuous development of accessible, cost‐effective, and highly efficient cooling solutions. Metals, such as silver and copper, with high thermal conductivity, can efficiently remove heat. However, ultralow infrared thermal emittance (<0.03) severely restricts their radiative heat dissipation capability. Here, a solution‐processed chemical oxidation reaction is demonstrated for transfiguring “infrared‐white” metals (high infrared thermal reflectance) to “infrared‐black” metametals (high infrared thermal emittance). Enabled by strong molecular vibrations of metal‐oxygen chemical bonds, this strategy via assembling nanostructured metal oxide thin films on metal surface yields infrared spectrum manipulation, high and omnidirectional thermal emittance (0.94 from 0 to 60°) with excellent thermomechanical stability. The thin film of metal oxides with relatively high thermal conductivity does not hinder heat dissipation. “Infrared‐black” meta‐aluminum shows a temperature drop of 21.3 °C corresponding to a cooling efficiency of 17.2% enhancement than the pristine aluminum alloy under a heating power of 2418 W m−2. This surface photon‐engineered strategy is compatible with other metals, such as copper and steel, and it broadens its implementation for accelerating heat dissipation.

     
    more » « less
  2. Passive daytime radiative cooling (PDRC) is a promising energy-saving cooling method to cool objects without energy consumption. Although numerous PDRC materials and structures have been proposed to achieve sub-ambient temperatures, the technique faces unprecedented challenges brought on by complicated and expensive fabrication. Herein, inspired by traditional Chinese oil-paper umbrellas, we develop a self-cleaning and self-cooling oil-foam composite (OFC) made of recycled polystyrene foam and tung oil to simultaneously achieve efficient passive radiative cooling and enhanced thermal dissipation of objects. The OFCs show high solar reflectance (0.90) and high mid-infrared thermal emittance (0.89) during the atmospheric transparent window, contributing to a sub-ambient temperature drop of ∼5.4 °C and cooling power of 86 W m −2 under direct solar irradiance. Additionally, the worldwide market of recycled packaging plastics can provide low-cost raw materials, further eliminating the release of plastics into the environment. The OFC offers an energy-efficient, cost-effective and environmentally friendly candidate for building cooling applications and provides a value-added path for plastic recycling. 
    more » « less
  3. Abstract

    Passive daytime radiative cooling (PDRC) can realize electricity‐free cooling by reflecting sunlight and emitting heat to the cold space. Current PDRC designs often involve costly vacuum processing or a large quantity of harmful organic solvents. Aqueous and paint‐like processing is cost‐effective and environmentally benign, thereby highly attractive for green manufacturing of PDRC coatings. However, common polymers explored in PDRC are difficult to disperse in water, let alone forming porous structures for efficient cooling. Here, a simple “bottom‐up” ball milling approach to create uniform microassembly of poly(vinylidene fluoride‐co‐hexafluoropropene) nanoparticles is reported. The micro‐ and nanopores among secondary particles and primary particles substantially enhance light scattering and results in excellent PDRC performance. A high solar reflectance of 0.94 and high emittance of 0.97 are achieved, making the coating 3.3 and 1.7 °C cooler than commercial white paints and the ambient temperature, under a high solar flux of ≈1100 W m−2. More importantly, the volatile organic compound content in the aqueous paint is only 71 g L−1. This satisfies the general regulatory requirements, which are critical to sustainability and practical applications.

     
    more » « less
  4. Abstract

    Solar steam generation, a sustainable water‐purification technology, holds substantial promise in resolving the global issue of shortage of drinkable water. Here, the design, fabrication, and high‐performance of an innovative 3D solar steamer, offering synergistic high‐efficiency steaming and heavy metal removal functions are reported. The device is made of synthesized carbon‐molybdenum‐disulfide microbeads electrostatically assembled on a 3D polyurethane sponge. The mesoporous composite sponge also serves as a freestanding water reservoir that avoids one‐side contact to bulk water, effectively suppressing the commonly observed parasitic heat loss, and offering a high energy efficiency of 88%. When being sculpted into a 3D spoke‐like structure, the composite sponge achieves one of the highest evaporation rates of 1.95 kg m−2h−1at 1 sun. The solar steamer is demonstrated for water treatment, i.e., decontamination of metal ions, disinfection, and reducing alkalinity and hardness of river water. Particularly, the strong mercury adsorption of MoS2reduces mercury levels from 200 to 1 ppb, meeting the stringent standard set by the Environmental Protection Agency, which is the first demonstration of mercury‐removal powered by solar energy. The unique design, fabrication, water‐handling strategy, and mercury‐removal function of this high‐performance solar steamer can inspire new paradigms of water treatment technologies.

     
    more » « less
  5. Abstract

    Aerosols can enhance terrestrial productivity through increased absorption of solar radiation by the shaded portion of the plant canopy—the diffuse radiation fertilization effect. Although this process can, in principle, alter surface evaporation due to the coupling between plant water loss and carbon uptake, with the potential to change the surface temperature, aerosol‐climate interactions have been traditionally viewed in light of the radiative effects within the atmosphere. Here, we develop a modeling framework that combines global atmosphere and land model simulations with a conceptual diagnostic tool to investigate these interactions from a surface energy budget perspective. Aerosols increase the terrestrial evaporative fraction, or the portion of net incoming energy consumed by evaporation, by over 4% globally and as much as ∼40% regionally. The main mechanism for this is the increase in energy allocation from sensible to latent heat due to global dimming (reduction in global shortwave radiation) and slightly augmented by diffuse radiation fertilization. In regions with moderately dense vegetation (leaf area index >2), the local surface cooling response to aerosols is dominated by this evaporative pathway, not the reduction in incident radiation. Diffuse radiation fertilization alone has a stronger impact on gross primary productivity (+2.18 Pg C y−1or +1.8%) than on land evaporation (+0.18 W m−2or +0.48%) and surface temperature (−0.01 K). Our results suggest that it is important for land surface models to distinguish between quantity (change in total magnitude) and quality (change in diffuse fraction) of radiative forcing for properly simulating surface climate.

     
    more » « less