Abstract Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, captured passively and continuously from smartphones and wearable devices, to infer depressive mood. However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically relevant events, and use measures of depression that are not validated or suitable for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood from computerized adaptive testing paired with continuous digital assessments of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of depression. We apply a combination of cubic spline interpolation and idiographic models to generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high prediction accuracy of depression severity up to three weeks in advance (R2≥ 80%) and a 65.7% reduction in the prediction error over a baseline model which predicts future mood based on past depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood from a clinical population and predicting symptom severity weeks in advance using passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific behavioral measures to enable future psychiatric research.
more »
« less
MSLife: Digital Behavioral Phenotyping of Multiple Sclerosis Symptoms in the Wild Using Wearables and Graph-Based Statistical Analysis
Treatment for multiple sclerosis (MS) focuses on managing its symptoms (e.g., depression, fatigue, poor sleep quality), varying with specific symptoms experienced. Thus, for optimal treatment, there arises the need to track these symptoms. Towards this goal, there is great interest in finding their relevant phenotypes. Prior research suggests links between activities of daily living (ADLs) and MS symptoms; therefore, we hypothesize that the behavioral phenotype (revealed through ADLs) is closely related to MS symptoms. Traditional approaches to finding behavioral phenotypes which rely on human observation or controlled clinical settings are burdensome and cannot account for all genuine ADLs. Here, we present MSLife, an end-to-end, burden-free approach to digital behavioral phenotyping of MS symptoms in the wild using wearables and graph-based statistical analysis. MSLife is built upon (1) low-cost, unobtrusive wearables (i.e., smartwatches) that can track and quantify ADLs among MS patients in the wild; (2) graph-based statistical analysis that can model the relationships between quantified ADLs (i.e., digital behavioral phenotype) and MS symptoms. We design, implement, and deploy MSLife with 30 MS patients across a one-week home-based IRB-approved clinical pilot study. We use the GENEActiv smartwatch to monitor ADLs and clinical behavioral instruments to collect MS symptoms. Then we develop a graph-based statistical analysis framework to model phenotyping relationships between ADLs and MS symptoms, incorporating confounding demographic factors. We discover 102 significant phenotyping relationships (e.g., later rise times are related to increased levels of depression, history of caffeine consumption is associated with lower fatigue levels, higher relative levels of moderate physical activity are linked with decreased sleep quality). We validate their healthcare implications, using them to track MS symptoms in retrospective analysis. To our best knowledge, this is one of the first practices to digital behavioral phenotyping of MS symptoms in the wild.
more »
« less
- Award ID(s):
- 2050910
- PAR ID:
- 10399632
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 35
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background Acute respiratory failure is generally treated with invasive mechanical ventilation or noninvasive respiratory support strategies. The efficacies of the various strategies are not fully understood. There is a need for accurate therapy-based phenotyping for secondary analyses of electronic health record data to answer research questions regarding respiratory management and outcomes with each strategy. Objective The objective of this study was to address knowledge gaps related to ventilation therapy strategies across diverse patient populations by developing an algorithm for accurate identification of patients with acute respiratory failure. To accomplish this objective, our goal was to develop rule-based computable phenotypes for patients with acute respiratory failure using remotely monitored intensive care unit (tele-ICU) data. This approach permits analyses by ventilation strategy across broad patient populations of interest with the ability to sub-phenotype as research questions require. Methods Tele-ICU data from ≥200 hospitals were used to create a rule-based algorithm for phenotyping patients with acute respiratory failure, defined as an adult patient requiring invasive mechanical ventilation or a noninvasive strategy. The dataset spans a wide range of hospitals and ICU types across all US regions. Structured clinical data, including ventilation therapy start and stop times, medication records, and nurse and respiratory therapy charts, were used to define clinical phenotypes. All adult patients of any diagnoses with record of ventilation therapy were included. Patients were categorized by ventilation type, and analysis of event sequences using record timestamps defined each phenotype. Manual validation was performed on 5% of patients in each phenotype. Results We developed 7 phenotypes: (0) invasive mechanical ventilation, (1) noninvasive positive-pressure ventilation, (2) high-flow nasal insufflation, (3) noninvasive positive-pressure ventilation subsequently requiring intubation, (4) high-flow nasal insufflation subsequently requiring intubation, (5) invasive mechanical ventilation with extubation to noninvasive positive-pressure ventilation, and (6) invasive mechanical ventilation with extubation to high-flow nasal insufflation. A total of 27,734 patients met our phenotype criteria and were categorized into these ventilation subgroups. Manual validation of a random selection of 5% of records from each phenotype resulted in a total accuracy of 88% and a precision and recall of 0.8789 and 0.8785, respectively, across all phenotypes. Individual phenotype validation showed that the algorithm categorizes patients particularly well but has challenges with patients that require ≥2 management strategies. Conclusions Our proposed computable phenotyping algorithm for patients with acute respiratory failure effectively identifies patients for therapy-focused research regardless of admission diagnosis or comorbidities and allows for management strategy comparisons across populations of interest.more » « less
-
Abstract Withdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors like irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during abstinence in a mouse model of chronic THC exposure. Using a THC treatment regimen known to produce tolerance, we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance to THC. Altered striatal DA release, sleep, and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. These findings provide a foundation for preclinical study of directly translatable non-precipitated THC withdrawal symptoms and the neural mechanisms that affect them.more » « less
-
null (Ed.)Non-contact home-based sleep monitoring will bring a paradigm shift to diagnosis and treatment of Obstructive Sleep Apnea (OSA) as it can facilitate easier access to specialized care in order to reach a much boarder set of patients. However, current remote unattended sleep studies are mostly contact sensor based and test results are sometimes falsified by sleep-critical job holders (driver, airline pilots) due to fear of potential job loss. In this work, we investigated identity authentication of patients with OSA symptoms based on extracting respiratory features (peak power spectral density, packing density and linear envelop error) from radar captured paradoxical breathing patterns in a small-scale clinical sleep study integrating three different machine learning classifiers (Support Vector Machine (SVM), K-nearest neighbor (KNN), Random forest). The proposed OSA-based authentication method was tested and validated for five OSA patients with 93.75% accuracy using KNN classifier which outperformed other classifiers.more » « less
-
BackgroundThe treatment of depression in children and adolescents is a substantial public health challenge. This study examined artificial intelligence tools for the prediction of early outcomes in depressed children and adolescents treated with fluoxetine, duloxetine, or placebo. MethodsThe study samples included training datasets (N = 271) from patients with major depressive disorder (MDD) treated with fluoxetine and testing datasets from patients with MDD treated with duloxetine (N = 255) or placebo (N = 265). Treatment trajectories were generated using probabilistic graphical models (PGMs). Unsupervised machine learning identified specific depressive symptom profiles and related thresholds of improvement during acute treatment. ResultsVariation in six depressive symptoms (difficulty having fun, social withdrawal, excessive fatigue, irritability, low self‐esteem, and depressed feelings) assessed with the Children’s Depression Rating Scale‐Revised at 4–6 weeks predicted treatment outcomes with fluoxetine at 10–12 weeks with an average accuracy of 73% in the training dataset. The same six symptoms predicted 10–12 week outcomes at 4–6 weeks in (a) duloxetine testing datasets with an average accuracy of 76% and (b) placebo‐treated patients with accuracies of 67%. In placebo‐treated patients, the accuracies of predicting response and remission were similar to antidepressants. Accuracies for predicting nonresponse to placebo treatment were significantly lower than antidepressants. ConclusionsPGMs provided clinically meaningful predictions in samples of depressed children and adolescents treated with fluoxetine or duloxetine. Future work should augment PGMs with biological data for refined predictions to guide the selection of pharmacological and psychotherapeutic treatment in children and adolescents with depression.more » « less
An official website of the United States government

