The ability to uniquely characterize individual subjects based on their functional connectome (FC) is a key requirement for progress toward
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain–behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
more » « less- Award ID(s):
- 2023985
- PAR ID:
- 10399640
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Cerebral Cortex
- Volume:
- 33
- Issue:
- 5
- ISSN:
- 1047-3211
- Format(s):
- Medium: X Size: p. 2375-2394
- Size(s):
- p. 2375-2394
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract precision psychiatry . FC fingerprinting is increasingly studied in the neuroimaging community for this purpose, where a variety of approaches have been developed for effective FC fingerprinting. Recent independent studies showed that fingerprinting accuracy suffers at large sample sizes and when coarser parcellations are used for computing the FC. Quantifying this problem and understanding the reasons these factors impact fingerprinting accuracy is crucial to develop more accurate fingerprinting methods for large sample sizes. Part of the challenge in fingerprinting is that FC captures both generic and subject‐specific information. A systematic approach for identifying subject‐specific FC information is crucial for making progress in addressing the fingerprinting problem. In this study, we addressed three gaps in our understanding of the FC fingerprinting problem. First, we studied the joint effect of sample size and parcellation granularity. Second, we explained the reason for reduced fingerprinting accuracy with increased sample size and reduced parcellation granularity. To this end, we used a clustering quality metric from the data mining community. Third, we developed a general feature selection framework for systematically identifying resting‐state functional connectivity (RSFC) elements that capture information to uniquely identify subjects. In sum, we evaluated six different approaches from this framework by quantifying both subject‐specific fingerprinting accuracy and the decrease in accuracy with an increase in sample size to identify which approach improved quality metrics the most. -
null (Ed.)Abstract Functional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales. Here, we propose a new approach to reveal temporal fluctuations in neuronal time series. Unwrapping FC signal correlations yields pairwise co-fluctuation time series, one for each node pair or edge, and allows tracking of fine-scale dynamics across the network. Co-fluctuations partition the network, at each time step, into exactly two communities. Sampled over time, the overlay of these bipartitions, a binary decomposition of the original time series, very closely approximates functional connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across participants and imaging runs, capture individual differences, and disclose fine-scale temporal expression of functional systems. Our findings document that functional systems appear transiently and intermittently, and that FC results from the overlay of many variable instances of system expression. Potential applications of this decomposition of functional connectivity into a set of binary patterns are discussed.more » « less
-
We conduct the first systematic study of the effectiveness of Web Audio API-based browser fingerprinting mechanisms and present new insights. First, we show that audio fingerprinting vectors, unlike other prior vectors, reveal an apparent fickleness with some users' browsers giving away differing fingerprints in repeated attempts. However, we show that it is possible to devise a graph-based analysis mechanism to collectively consider all the different fingerprints left by users' browsers and thus craft a highly stable fingerprinting mechanism. Next, we investigate the diversity of audio fingerprints and compare this with prior fingerprinting techniques. Our results show that audio fingerprints are much less diverse than other vectors with only 95 distinct fingerprints among 2093 users. At the same time, further analysis shows that web audio fingerprinting can potentially bring considerable additive value to existing fingerprinting mechanisms. For instance, our results show that the addition of web audio fingerprinting causes a 9.6\% increase in entropy when compared to using Canvas fingerprinting alone. We also show that our results contradict the current security and privacy recommendations provided by W3C regarding audio fingerprinting.more » « less
-
Abstract Interactions among atmospheric, root‐soil, and vegetation processes drive carbon dioxide fluxes (
Fc ) from land to atmosphere. Eddy covariance measurements are commonly used to measureFc at sub‐daily timescales and validate process‐based and data‐driven models. However, these validations do not reveal process interactions, thresholds, and key differences in how models replicate them. We use information theory‐based measures to explore multivariate information flow pathways from forcing data to observed and modeled hourlyFc , using flux tower data sets in the Midwestern U.S. in intensively managed corn‐soybean landscapes. We compare multiple linear regressions, long‐short term memory, and random forests (RF), and evaluate how different model structures use information from combinations of sources to predictFc . We extend a framework for model predictive and functional performance, which examines a suite of dependencies from all forcing variables to the observed or modeled target. Of the three model types, RF exhibited the highest functional and predictive performance, correctly capturing strong dependencies between radiation and temperature variables withFc . Regionally trained models demonstrate lower predictive but higher functional performance compared to site‐specific models, suggesting superior reproduction of observed relationships at the expense of predictive accuracy. This study shows that some metrics of predictive performance encapsulate functional behaviors better than others, highlighting the need for multiple metrics of both types. This study improves our understanding of carbon fluxes in an intensively managed landscape, and more generally provides insight into how model structures and forcing variables translate to interactions that are well versus poorly captured in models. -
This paper proposes FingerprinTV, a fully automated methodology for extracting fingerprints from the network traffic of smart TV apps and assessing their performance. FingerprinTV (1) installs, repeatedly launches, and collects network traffic from smart TV apps; (2) extracts three different types of network fingerprints for each app, i.e., domain-based fingerprints (DBF), packet-pair-based fingerprints (PBF), and TLS-based fingerprints (TBF); and (3) analyzes the extracted fingerprints in terms of their prevalence, distinctiveness, and sizes. From applying FingerprinTV to the top-1000 apps of the three most popular smart TV platforms, we find that smart TV app network fingerprinting is feasible and effective: even the least prevalent type of fingerprint manifests itself in at least 68% of apps of each platform, and up to 89% of fingerprints uniquely identify a specific app when two fingerprinting techniques are used together. By analyzing apps that exhibit identical fingerprints, we find that these apps often stem from the same developer or “no code” app generation toolkit. Furthermore, we show that many apps that are present on all three platforms exhibit platform-specific fingerprints.more » « less