skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Morphodynamics of a Wide Class of Large‐Scale Meandering Rivers: Insights Gained by Coupling LES With Sediment‐Dynamics
Abstract In meandering rivers, interactions between flow, sediment transport, and bed topography affect diverse processes, including bedform development and channel migration. Predicting how these interactions affect the spatial patterns and magnitudes of bed deformation in meandering rivers is essential for various river engineering and geoscience problems. Computational fluid dynamics simulations can predict river morphodynamics at fine temporal and spatial scales but have traditionally been challenged by the large scale of natural rivers. We conducted coupled large‐eddy simulation and bed morphodynamics simulations to create a unique database of hydro‐morphodynamic data sets for 42 meandering rivers with a variety of planform shapes and large‐scale geometrical features that mimic natural meanders. For each simulated river, the database includes (a) bed morphology, (b) three‐dimensional mean velocity field, and (c) bed shear stress distribution under bankfull flow conditions. The calculated morphodynamics results at dynamic equilibrium revealed the formation of scour and deposition patterns near the outer and inner banks, respectively, while the location of point bars and scour regions around the apexes of the meander bends is found to vary as a function of the radius of curvature of the bends to the width ratio. A new mechanism is proposed that explains this seemingly paradoxical finding. The high‐fidelity simulation results generated in this work provide researchers and scientists with a rich numerical database for morphodynamics and bed shear stress distributions in large‐scale meandering rivers to enable systematic investigation of the underlying phenomena and support a range of river engineering applications.  more » « less
Award ID(s):
1823530
PAR ID:
10399674
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Distribution of bed shear stress is the critical factor in regulating the meandering of single-thread rivers. However, the impact of ice cover on bed shear stress is largely unknown. In this study, we develop a theoretical model of cross-stream momentum balance to examine the distribution of bed shear stresses in ice-covered meandering rivers. To validate the theoretical model, field surveys were carried out in a river reach of the Red River in Fargo, North Dakota. Data monitoring was completed using an Acoustic Doppler Current Profiler to obtain time-averaged velocity profiles. Our theoretical model indicates that an ice covering develops high-shear zones near both the inner and outer banks, which might exacerbate sediment transport and enhance bank erosion. Velocity measurements confirm the results of the proposed model and demonstrate a clear impact of meandering river banks on velocity profiles and secondary flow patterns under ice cover. Based on our results, we hypothesize that ice cover increases turbulent stresses near banks, which in turn lead to the enhancement of the bed shear stress. Our work provides new insights into the impact of ice cover on bed shear stress distribution, which could play an important role in driving sediment-transport processes and the long-term morphodynamic evolution of meandering rivers seasonally covered by ice. 
    more » « less
  2. Abstract Prediction of statistical properties of the turbulent flow in large‐scale rivers is essential for river flow analysis. The large‐eddy simulation (LES) provides a powerful tool for such predictions; however, it requires a very long sampling time and demands significant computing power to calculate the turbulence statistics of riverine flows. In this study, we developed encoder‐decoder convolutional neural networks (CNNs) to predict the first‐ and second‐order turbulence statistics of the turbulent flow of large‐scale meandering rivers using instantaneous LES results. We train the CNNs using a data set obtained from LES of the flood flow in a large‐scale river with three bridge piers—a training testbed. Subsequently, we employed the trained CNNs to predict the turbulence statistics of the flood flow in two different meandering rivers and bridge pier arrangements—validation testbed rivers. The CNN predictions for the validation testbed river flow were compared with the simulation results of a separately done LES to evaluate the performance of the developed CNNs. We show that the trained CNNs can successfully produce turbulence statistics of the flood flow in the large‐scale rivers, that is, the validation testbeds. 
    more » « less
  3. Abstract Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics. 
    more » « less
  4. We present a coupled large-eddy simulation (LES) and bed morphodynamics study to investigate the impact of sediment dynamics on the wake flow, wake recovery, and power production of a utility-scale marine hydrokinetic vertical-axis turbine (VAT). A geometry-resolving immersed boundary method is employed to capture the turbine components, the waterway, and the sediment layer. Our numerical findings reveal that increasing the turbine tip speed ratio would intensify turbulence, accelerate wake recovery, and increase erosion at the base of the device. Furthermore, it is found that the deformation of the bed around the turbine induces a jet-like flow near the evolving bed beneath the turbine, which enhances wake recovery. Analyzing the interactions between turbulent flow and bed morphodynamics, this study seeks to provide physical information on the environmental and operational implications of VAT deployment in natural riverine and marine environments. 
    more » « less
  5. Pore-resolved direct numerical simulations are performed to investigate the interactions between streamflow turbulence and groundwater flow through a randomly packed porous sediment bed for three permeability Reynolds numbers,$$Re_K=2.56$$, 5.17 and 8.94, representative of natural stream or river systems. Time–space averaging is used to quantify the Reynolds stress, form-induced stress, mean flow and shear penetration depths, and mixing length at the sediment–water interface (SWI). The mean flow and shear penetration depths increase with$$Re_K$$and are found to be nonlinear functions of non-dimensional permeability. The peaks and significant values of the Reynolds stresses, form-induced stresses, and pressure variations are shown to occur in the top layer of the bed, which is also confirmed by conducting simulations of just the top layer as roughness elements over an impermeable wall. The probability distribution functions (p.d.f.s) of normalized local bed stress are found to collapse for all Reynolds numbers, and their root-mean-square fluctuations are assumed to follow logarithmic correlations. The fluctuations in local bed stress and resultant drag and lift forces on sediment grains are mainly a result of the top layer; their p.d.f.s are symmetric with heavy tails, and can be well represented by a non-Gaussian model fit. The bed stress statistics and the pressure data at the SWI potentially can be used in providing better boundary conditions in modelling of incipient motion and reach-scale transport in the hyporheic zone. 
    more » « less