skip to main content


Title: Challenges in atomic layer etching of gallium nitride using surface oxidation and ligand-exchange

Two atomic layer etching (ALE) methods were studied for crystalline GaN, based on oxidation, fluorination, and ligand exchange. Etching was performed on unintentionally doped GaN grown by hydride vapor phase epitaxy. For the first step, the GaN surfaces were oxidized using either water vapor or remote O2-plasma exposure to produce a thin oxide layer. Removal of the surface oxide was addressed using alternating exposures of hydrogen fluoride (HF) and trimethylgallium (TMG) via fluorination and ligand exchange, respectively. Several HF and TMG super cycles were implemented to remove the surface oxide. Each ALE process was monitored in situ using multiwavelength ellipsometry. X-ray photoelectron spectroscopy was employed for the characterization of surface composition and impurity states. Additionally, the thermal and plasma-enhanced ALE methods were performed on patterned wafers and transmission electron microscopy (TEM) was used to measure the surface change. The x-ray photoelectron spectroscopy measurements indicated that F and O impurities remained on etched surfaces for both ALE processes. Ellipsometry indicated a slight reduction in thickness. TEM indicated a removal rate that was less than predicted. We suggest that the etch rates were reduced due to the ordered structure of the oxide formed on crystalline GaN surfaces.

 
more » « less
NSF-PAR ID:
10399676
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
2
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microwave loss in superconducting TiN films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications, or the etch rate lacks the desired control. Furthermore, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6/H2 plasma. For certain ratios of SF6:H2 flow rates, we observe selective etching of TiO2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 Å/cycle at 150°C to 3.2 Å/cycle at 350°C using ex situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits. 
    more » « less
  2. Fundamental studies are needed to advance our understanding of selective adsorption in aqueous environments and develop more effective sorbents and filters for water treatment. Vapor-phase grafting of functional silanes is an effective method to prepare well-defined surfaces to study selective adsorption. In this investigation, we perform vapor phase grafting of five different silane compounds on aluminum oxide (Al2O3) surfaces prepared by atomic layer deposition. These silane compounds have the general formula L3Si–C3H6–X where the ligand, L, controls the reactivity with the hydroxylated Al2O3 surface and the functional moiety, X, dictates the surface properties of the grafted layer. We study the grafting process using in situ Fourier transform infrared spectroscopy and ex situ x-ray photoelectron spectroscopy measurements, and we characterize the surfaces using scanning electron microscopy, atomic force microscopy, and water contact angle measurements. We found that the structure and density of grafted aminosilanes are influenced by their chemical reactivity and steric constraints around the silicon atom as well as by the nature of the anchoring functional groups. Methyl substituted aminosilanes yielded more hydrophobic surfaces with a higher surface density at higher grafting temperatures. Thiol and nitrile terminated silanes were also studied and compared to the aminosilane terminated surfaces. Uniform monolayer coatings were observed for ethoxy-based silanes, but chlorosilanes exhibited nonuniform coatings as verified by atomic force microscopy measurements.

     
    more » « less
  3. null (Ed.)
    Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures. 
    more » « less
  4. null (Ed.)
    Here, we report the high-temperature superlubricity phenomenon accomplished in coatings produced by burnishing powders of antimony trioxide (Sb 2 O 3 ) and magnesium silicate hydroxide coated with carbon (MSH/C) onto the nickel superalloy substrate. The tribological analysis performed in an open-air experimental setup revealed that with the increase of testing temperature, the coefficient of friction (COF) of the coating gradually decreases, finally reaching the superlubricity regime (the COF of 0.008) at 300°C. The analysis of worn surfaces using in-situ Raman spectroscopy suggested the synergistic effect of the inner Sb 2 O 3 adhesion layer and the top MSH/C layer, which do not only isolate the substrate from the direct exposure to sliding but also protect it from oxidation. The cross-sectional transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated the tribochemically-activated formation of an amorphous carbon layer on the surface of the coating during sliding. Formation of the film enables the high-temperature macroscale superlubricity behavior of the material system. 
    more » « less
  5. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared. 
    more » « less