skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Vapor-phase grafting of functional silanes on atomic layer deposited Al2O3

Fundamental studies are needed to advance our understanding of selective adsorption in aqueous environments and develop more effective sorbents and filters for water treatment. Vapor-phase grafting of functional silanes is an effective method to prepare well-defined surfaces to study selective adsorption. In this investigation, we perform vapor phase grafting of five different silane compounds on aluminum oxide (Al2O3) surfaces prepared by atomic layer deposition. These silane compounds have the general formula L3Si–C3H6–X where the ligand, L, controls the reactivity with the hydroxylated Al2O3 surface and the functional moiety, X, dictates the surface properties of the grafted layer. We study the grafting process using in situ Fourier transform infrared spectroscopy and ex situ x-ray photoelectron spectroscopy measurements, and we characterize the surfaces using scanning electron microscopy, atomic force microscopy, and water contact angle measurements. We found that the structure and density of grafted aminosilanes are influenced by their chemical reactivity and steric constraints around the silicon atom as well as by the nature of the anchoring functional groups. Methyl substituted aminosilanes yielded more hydrophobic surfaces with a higher surface density at higher grafting temperatures. Thiol and nitrile terminated silanes were also studied and compared to the aminosilane terminated surfaces. Uniform monolayer coatings were observed for ethoxy-based silanes, but chlorosilanes exhibited nonuniform coatings as verified by atomic force microscopy measurements.

 
more » « less
Award ID(s):
1900188
PAR ID:
10481558
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non‐growth substrates. The surface sites and their role in the initial stages of deposition are examined by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen‐containing defects are primary drivers of selectivity loss on these surfaces.

     
    more » « less
  2. Two atomic layer etching (ALE) methods were studied for crystalline GaN, based on oxidation, fluorination, and ligand exchange. Etching was performed on unintentionally doped GaN grown by hydride vapor phase epitaxy. For the first step, the GaN surfaces were oxidized using either water vapor or remote O2-plasma exposure to produce a thin oxide layer. Removal of the surface oxide was addressed using alternating exposures of hydrogen fluoride (HF) and trimethylgallium (TMG) via fluorination and ligand exchange, respectively. Several HF and TMG super cycles were implemented to remove the surface oxide. Each ALE process was monitored in situ using multiwavelength ellipsometry. X-ray photoelectron spectroscopy was employed for the characterization of surface composition and impurity states. Additionally, the thermal and plasma-enhanced ALE methods were performed on patterned wafers and transmission electron microscopy (TEM) was used to measure the surface change. The x-ray photoelectron spectroscopy measurements indicated that F and O impurities remained on etched surfaces for both ALE processes. Ellipsometry indicated a slight reduction in thickness. TEM indicated a removal rate that was less than predicted. We suggest that the etch rates were reduced due to the ordered structure of the oxide formed on crystalline GaN surfaces.

     
    more » « less
  3. Morphology plays a critical role in determining the properties of solid-state molecular materials, yet fluctuates wildly as these materials undergo reaction. A prototypical system, a vapor–solid Diels–Alder reaction of tetracene and pentacene thin-films, is used to observe the evolution of morphology features as the reaction transitions from surface to bulk. The initial stages of reaction display little topographical change as measured by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and substrates are coated with a uniform layer of product 1–2 molecules thick, as determined by energy-dispersive X-ray (EDX) spectroscopy. The highly textured surfaces of late stage reactions are a result of aggregated products, as identified via EDX spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS); areas of the surface in between product aggregates resemble the initial stages. The mechanism by which products aggregate into surface asperities requires the assistance of a facilitating media – in this case condensed vapor; simple thermally assisted surface diffusion was unable to generate these morphology changes. The combined data indicate that reactions of molecular solids, could be confined to the surface in the absence of condensate of the vapor phase reactant. 
    more » « less
  4. The growth of atomic layer deposited (ALD) Al2O3 on planar ZnSe substrates is studied using in situ spectroscopic ellipsometry. An untreated ZnSe surface requires an incubation period of 27 cycles of ALD Al2O3 before film growth is observed. Pretreating the surface with an ultraviolet generated ozone lowers the incubation to 17 cycles, whereas a plasma-enhanced ALD Al2O3 process can further lower the incubation period to 13 cycles. The use of ozone or plasma-activated oxygen species on ZnSe is found to create ZnO and SeO2, which are responsible for converting ZnSe from a hydrophobic to a hydrophilic surface. The interfacial layer between Al2O3 and ZnSe is mapped using high-resolution transmission electron microscopy and scanning transmission electron microscopy/energy dispersive spectroscopy. SeO2 is volatile and leaves a zinc-rich interface, which is 4.3 nm thick for the ultraviolet generated ozone pretreated sample and 2.5 nm for the plasma-enhanced ALD process.

     
    more » « less
  5. Terminal silanol groups on the glass surface were used for the chemical bonding of α-bromo amide as the initiator for surface initiated Cu(0)-mediated living radical polymerization (LRP) to graft well-defined poly(butyl arylate) (PBA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEM) brushes on the glass surface. A grafting to methodology was also performed by the modification of the glass surface using a thiosilane agent and performing a thio-bromo click reaction in the presence of PBA and PTFEM synthesized via Cu(0)-mediated LRP. Furthermore, a one-pot grafting to method was developed that proved a facile, fast, and efficient method for grafting a bromo-terminated polymer to the glass surface in one step. All glass slides were characterized using ATR-FTIR and UV-vis spectroscopy, water contact angle measurements and SEM. The surface topology and roughness of selected samples were analyzed using AFM. Results show that an ultrathin layer of a polymer with nanoscale features and high roughness was chemically grafted to the glass surface without compromising glass transparency. These methodologies can be used to graft well-defined polymers with different functionalities on the glass surface. 
    more » « less