Abstract As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non‐growth substrates. The surface sites and their role in the initial stages of deposition are examined by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen‐containing defects are primary drivers of selectivity loss on these surfaces.
more »
« less
Vapor-phase grafting of functional silanes on atomic layer deposited Al2O3
Fundamental studies are needed to advance our understanding of selective adsorption in aqueous environments and develop more effective sorbents and filters for water treatment. Vapor-phase grafting of functional silanes is an effective method to prepare well-defined surfaces to study selective adsorption. In this investigation, we perform vapor phase grafting of five different silane compounds on aluminum oxide (Al2O3) surfaces prepared by atomic layer deposition. These silane compounds have the general formula L3Si–C3H6–X where the ligand, L, controls the reactivity with the hydroxylated Al2O3 surface and the functional moiety, X, dictates the surface properties of the grafted layer. We study the grafting process using in situ Fourier transform infrared spectroscopy and ex situ x-ray photoelectron spectroscopy measurements, and we characterize the surfaces using scanning electron microscopy, atomic force microscopy, and water contact angle measurements. We found that the structure and density of grafted aminosilanes are influenced by their chemical reactivity and steric constraints around the silicon atom as well as by the nature of the anchoring functional groups. Methyl substituted aminosilanes yielded more hydrophobic surfaces with a higher surface density at higher grafting temperatures. Thiol and nitrile terminated silanes were also studied and compared to the aminosilane terminated surfaces. Uniform monolayer coatings were observed for ethoxy-based silanes, but chlorosilanes exhibited nonuniform coatings as verified by atomic force microscopy measurements.
more »
« less
- Award ID(s):
- 1900188
- PAR ID:
- 10481558
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 41
- Issue:
- 3
- ISSN:
- 0734-2101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Modification of a surface with polymer brushes has emerged as an effective approach to tune the properties of a substrate. Brushes grown from an inimer‐containing cross‐linkable polymer coating provide significant advantages compared to other “grafting‐from” methods, such as improved stability, increased grafting density, and the potential to control the grafting density. So far, the inimer coating method has only been applied for surface‐initiated controlled radical polymerizations. In this work, an approach is presented for the fabrication of a stable cross‐linked ultra‐thin polymer coating containing hydroxyl groups which serve as initiating sites for surface‐initiated ring‐opening polymerization (SI‐ROP). The polymers used for the fabrication of the coatings consist of 2‐((tetrahydro‐2H‐pyran‐2‐yl)oxy)ethyl methacrylate (THPEMA), a small fraction of a cross‐linkable unit, and a diluent styrene. Three coatings with varying THPEMA and styrene content are fabricated, and poly(dimethyl siloxane) (PDMS) and poly(caprolactone) (PCL) brushes are grown by SI‐ROP of hexamethylcyclotrisiloxane (D3), and ε‐caprolactone respectively. The brushes are characterized by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), static contact angle measurements, ellipsometry and size exclusion chromatography (SEC). The results demonstrate a well‐controlled ROP of D3and ability to control grafting density by tuning the THPEMA content of the coatings.more » « less
-
Morphology plays a critical role in determining the properties of solid-state molecular materials, yet fluctuates wildly as these materials undergo reaction. A prototypical system, a vapor–solid Diels–Alder reaction of tetracene and pentacene thin-films, is used to observe the evolution of morphology features as the reaction transitions from surface to bulk. The initial stages of reaction display little topographical change as measured by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and substrates are coated with a uniform layer of product 1–2 molecules thick, as determined by energy-dispersive X-ray (EDX) spectroscopy. The highly textured surfaces of late stage reactions are a result of aggregated products, as identified via EDX spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS); areas of the surface in between product aggregates resemble the initial stages. The mechanism by which products aggregate into surface asperities requires the assistance of a facilitating media – in this case condensed vapor; simple thermally assisted surface diffusion was unable to generate these morphology changes. The combined data indicate that reactions of molecular solids, could be confined to the surface in the absence of condensate of the vapor phase reactant.more » « less
-
Atomic force microscopy (AFM), in particular force spectroscopy, is a powerful tool for understanding the supramolecular structures associated with polymers grafted to surfaces, especially in regimes of low polymer density where different morphological structures are expected. In this study, we utilize force volume mapping to characterize the nanoscale surfaces of Ag nanocubes (AgNCs) grafted with a monolayer of polyethylene glycol (PEG) chains. Spatially resolved force−distance curves taken for a single AgNC were used to map surface properties, such as adhesion energy and deformation. We confirm the presence of surface octopus micelles that are localized on the corners of the AgNC, using force curves to resolve structural differences between the micelle “bodies” and “legs”. Furthermore, we observe unique features of this system including a polymer corona stemming from AgNC−substrate interactions and polymer bridging stemming from particle−particle interactions.more » « less
-
The growth of atomic layer deposited (ALD) Al2O3 on planar ZnSe substrates is studied using in situ spectroscopic ellipsometry. An untreated ZnSe surface requires an incubation period of 27 cycles of ALD Al2O3 before film growth is observed. Pretreating the surface with an ultraviolet generated ozone lowers the incubation to 17 cycles, whereas a plasma-enhanced ALD Al2O3 process can further lower the incubation period to 13 cycles. The use of ozone or plasma-activated oxygen species on ZnSe is found to create ZnO and SeO2, which are responsible for converting ZnSe from a hydrophobic to a hydrophilic surface. The interfacial layer between Al2O3 and ZnSe is mapped using high-resolution transmission electron microscopy and scanning transmission electron microscopy/energy dispersive spectroscopy. SeO2 is volatile and leaves a zinc-rich interface, which is 4.3 nm thick for the ultraviolet generated ozone pretreated sample and 2.5 nm for the plasma-enhanced ALD process.more » « less
An official website of the United States government

