Abstract The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever‐expanding toolbox of nanoscale engineering and self‐organization provides a chirality‐based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
more »
« less
Chiral nanomaterials: evolving rapidly from concepts to applications
Chiral nanostructures is one of the most rapidly developing research fields encompassing chemistry, physics, and biology. The rise to academic prominence of chiral nanostructures was fueled by their giant optical activity and the fundamental structural parallels between biotic and abiotic structures with mirror asymmetry. Our introduction and the themed collection provide both a timely snapshot and comprehensive overview of concepts being developed by a diverse spectrum of scientists around the world working in in chiral nanostructures from metals, semiconductors and ceramics. Many fundamental discoveries in this area are expected that are likely to encompass multiscale chirality transfer, chiral surfaces, biological signaling, and circularly polarized emitters. Technological applications being pursued along the way of fundamental studies include biosensing, healthcare, chiral photonics, and sustainable catalysis.
more »
« less
- Award ID(s):
- 1411014
- PAR ID:
- 10399809
- Date Published:
- Journal Name:
- Materials Advances
- Volume:
- 3
- Issue:
- 9
- ISSN:
- 2633-5409
- Page Range / eLocation ID:
- 3677 to 3679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plasmonic nanosystems and metamaterials have recently attracted considerable attention because of their ability to enhance the light–matter interactions. One of such optical phenomena is the chiral‐ or handedness‐dependent response which typically requires 3D samples. Planar structures that can exhibit chiral response are highly desirable because of their facile fabrication, however fundamental challenges arising from the 2D nature of these systems prevent the generation of strong chiro‐optical effects. In this work, giant enhancement of the handedness‐dependent optical response in planar metallic nanostructures is shown by exploring the hybridization of plasmonic–photonic modes in a chiral metasurface. The resulting planar hybrid metasurface exhibits over an order of magnitude difference in nonlinear optical response when illuminated with excitation light of opposite circular polarizations. The unique properties of the hybridized plasmonic–photonic modes are shown to be responsible for the giant chiral nonlinear response. This platform allows to study the fundamental framework of chiral optical effects that arise from the combination of planar chirality and collective interaction of discrete nanosystems.more » « less
-
Abstract The very chemical structure of DNA that enables biological heredity and evolution has non‐trivial implications for the self‐organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self‐assembly. Discussed last are existing and proposed functional man‐made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing.more » « less
-
Abstract The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.more » « less
-
Abstract Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects. In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.more » « less
An official website of the United States government

