Chiral nanostructures is one of the most rapidly developing research fields encompassing chemistry, physics, and biology. The rise to academic prominence of chiral nanostructures was fueled by their giant optical activity and the fundamental structural parallels between biotic and abiotic structures with mirror asymmetry. Our introduction and the themed collection provide both a timely snapshot and comprehensive overview of concepts being developed by a diverse spectrum of scientists around the world working in in chiral nanostructures from metals, semiconductors and ceramics. Many fundamental discoveries in this area are expected that are likely to encompass multiscale chirality transfer, chiral surfaces, biological signaling, and circularly polarized emitters. Technological applications being pursued along the way of fundamental studies include biosensing, healthcare, chiral photonics, and sustainable catalysis. 
                        more » 
                        « less   
                    
                            
                            Chiral Nanoceramics
                        
                    
    
            Abstract The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever‐expanding toolbox of nanoscale engineering and self‐organization provides a chirality‐based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1748529
- PAR ID:
- 10455284
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 32
- Issue:
- 41
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects. In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.more » « less
- 
            Abstract The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.more » « less
- 
            Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices.more » « less
- 
            Abstract Plasmon‐mediated synthesis enables isotropic metal nanocrystal growth with linearly polarized light. This limits the effect of the polarization of incident light during synthesis, and thus restricts the structural chirality of nanocrystals produced with circularly polarized light (CPL). This study here demonstrates that surface engineering of initial achiral silver nanorods (AgNRs) can enhance the structural chirality of the resulting nanostructures produced with CPL. Specifically, the surface ligand hexadecyltrimethylammonium bromide (CTAB) stabilizes the lateral (100) facet‐terminated sides of achiral AgNRs and inhibits lateral growth. This surface engineering with achiral ligands results in increased dissymmetry of the nanostructures during the early stages of photo‐growth and leads to the formation of “hook” structures, where silver preferentially deposits near the tips of the nanorods. Upon further CPL illumination, these “hook” structures exhibit a significantly larger dissymmetry in the local electric field enhancement distribution compared to the initial achiral AgNRs. This highly dissymmetric electric field enhancement profile influences subsequent growth, resulting in AgNRs with enhanced structural chirality. Notably, the optical dissymmetry of these chiral nanostructures withg‐factor≈0.05 is an order of magnitude greater than that reported in previous studies conducted under similar chemical conditions but without surface engineering.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
