skip to main content


Title: Blended, Transmedia Learning: Investigating the Engagement of Elementary Students in a Cryptology and Cybersecurity Curriculum
This convergent mixed method study investigates learner engagement during a blended, transmedia curriculum called CryptoComics which is designed to teach 3rd-5th graders about cryptology and cybersecurity. Curriculum design is presented through the lens of four engagement facilitators: (1) anchoring the curriculum with a comic book, (2) blending digital and unplugged media, (3) supporting situational interest via a transmedia narrative and (4) designing for social-cultural relevance. Latent profile analysis is used to develop profiles of learner engagement using quantitative indicators of cognitive and emotional engagement collected across 204 students at 13 implementation sites in the Eastern U.S. Qualitative indicators of engagement include teacher weekly check-ins submitted by 17 teachers working at the 13 implementation sites, student interviews, and classroom observations of 26 students participating in the curriculum at two local sites. Quantitative and qualitative results converge to suggest the majority of the students participating in the curriculum were highly engaged cognitively and emotionally. Qualitative data (1) suggest some third graders may be less cognitively engaged due to challenging content, (2) provide evidence for how design of the blended, transmedia curriculum supported, and some cases hindered, engagement, (3) highlight the importance of transitions between blended learning components in facilitating engagement and (4) uncover questions regarding one of the quantitative measures selected as an indicator of cognitive engagement.  more » « less
Award ID(s):
1849768
NSF-PAR ID:
10399821
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of online learning research
Volume:
8
Issue:
3
ISSN:
2374-1473
Page Range / eLocation ID:
393-424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  2. Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate to the Cold War era; EC 2000 and its call for greater emphasis on professional skill sets amidst concerns about US manufacturing productivity and national competitiveness; the development of outcomes assessment and its implementation; and the successive negotiations about assessment practice and the training of both of program evaluators and assessment coordinators for the degree programs undergoing evaluation. It was these negotiations and the evolving practice of assessment that resulted in the latest set of changes in ABET engineering accreditation criteria (“1-7” versus “a-k”). To provide an insight into the origins of EC 2000, the “Gang of Six,” consisting of a group of individuals loyal to ABET who used the pressure exerted by external organizations, along with a shared rhetoric of national competitiveness to forge a common vision organized around the expanded emphasis on professional skill sets. It was also significant that the Gang of Six was aware of the fact that the regional accreditation agencies were already contemplating a shift towards outcomes assessment; several also had a background in industrial engineering. However, this resulted in an assessment protocol for EC 2000 that remained ambiguous about whether the stated learning outcomes (Criterion 3) was something faculty had to demonstrate for all of their students, or whether EC 2000’s main emphasis was continuous improvement. When it proved difficult to demonstrate learning outcomes on the part of all students, ABET itself began to place greater emphasis on total quality management and continuous process improvement (TQM/CPI). This gave institutions an opening to begin using increasingly limited and proximate measures for the “a-k” student outcomes as evidence of effort and improvement. In what social scientific terms would be described as “tactical” resistance to perceived oppressive structures, this enabled ABET coordinators and the faculty in charge of degree programs, many of whom had their own internal improvement processes, to begin referring to the a-k criteria as “difficult to achieve” and “ambiguous,” which they sometimes were. Inconsistencies in evaluation outcomes enabled those most discontented with the a-k student outcomes to use ABET’s own organizational processes to drive the latest revisions to EAC accreditation criteria, although the organization’s own process for member and stakeholder input ultimately restored much of the professional skill sets found in the original EC 2000 criteria. Other refinements were also made to the standard, including a new emphasis on diversity. This said, many within our interview population believe that EC 2000 had already achieved much of the changes it set out to achieve, especially with regards to broader professional skills such as communication, teamwork, and design. Regular faculty review of curricula is now also a more routine part of the engineering education landscape. While programs vary in their engagement with ABET, there are many who are skeptical about whether the new criteria will produce further improvements to their programs, with many arguing that their own internal processes are now the primary drivers for change. 
    more » « less
  3. A persistent problem in engineering is an insufficient number of students interested in pursuing engineering as a college major and career. Middle school is a critical time where student interest, identity, and career choices begin to solidify. Student interest in engineering at the K-12 level has been shown to predict whether they pursue engineering as a college major and career. Therefore, research is needed to determine if engineering summer camp activities affect engineering interest and identity in middle school students and in this paper, we present a research study approach to achieve the stated objective. To develop engineering-specific theories of how engineers are formed, this paper explores interest and identity development of three middle-school populations participating in engineering summer camps offered by the College of Engineering at a Western land-grant institution: (1) Young women in engineering camp (2) First generation camp and, (3) Introduction to engineering camp. The camps are identical in content and designed with the goal of increasing understanding of different engineering fields and careers. The only difference between the three camps is that the women-focused and first generation camps involve participation of guest speakers and role-model mentors appropriate for the camp populations. The main objective of designing this mixed-methods research study is to answer three research questions: (1) How strongly are engineering identity and interest linked to the intention to pursue engineering as a major in college and as a future career? (2) Which specific activities in the camps lead to a change in identity and interest in engineering? (3) To what extent and in what ways do the qualitative participant focus group interviews and observations of participants engaged in camp activities addressing research question (2) contribute to a comprehensive understanding of the quantitative data obtained via pre- and post-surveys addressing research question (1)? The research design leverages existing quantitative surveys. Additionally, focus groups and observations will be based on a selected set of questions from these surveys. The research design consists of one phase with two data streams. Quantitative data are gathered in Phase 1 from two data collection points: first, when students register for the camp and, second, at the end of the camp (post-survey). Qualitative data in the form of in-depth focus group interviews (at the end of the camp) with 4 – 5 participants per focus group and observations of camp activities during the five days of camp are implemented. For the qualitative analysis, Grounded Theory is utilized for analyzing focus group interview and observation transcripts using an iterative process that involves reading, discussing, and coding. This paper will present details of the quantitative and qualitative analysis methods used for this study. The research is funded by the National Science Foundation PFE:RIEF program. 
    more » « less
  4. Abstract

    Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes:(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.

     
    more » « less
  5. An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters. 
    more » « less