Abstract.—Testing adaptive hypotheses about how continuous traits evolve in association with developmentally structured discrete traits, while accounting for the confounding influence of other, hidden, evolutionary forces, remains a challenge in evolutionary biology. For example, geophytes are herbaceous plants—with underground buds—that use underground storage organs (USOs) to survive extended periods of unfavorable conditions. Such plants have evolved multiple times independently across all major vascular plant lineages. Even within closely related lineages, however, geophytes show impressive variation in the morphological modifications and structures (i.e.,“types” of USOs) that allow them to survive underground. Despite the developmental and structural complexity of USOs, the prevailing hypothesis is that they represent convergent evolutionary “solutions” to a common ecological problem, though some recent research has drawn this conclusion into question. We extend existing phylogenetic comparative methods to test for links between the hierarchical discrete morphological traits associated with USOs and adaptation to environmental variables, using a phylogeny of 621 species in Liliales. We found that plants with different USO types do not differ in climatic niche more than expected by chance, with the exception of root morphology, where modified roots are associated with lower temperature seasonality. These findings suggest that root tubers may reflect adaptations to more »
- Publication Date:
- NSF-PAR ID:
- 10400031
- Journal Name:
- Systematic Biology
- ISSN:
- 1063-5157
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other andmore »
-
Bik, Holly (Ed.)ABSTRACT The complex network of associations between corals and their dinoflagellates (family Symbiodiniaceae) are the basis of coral reef ecosystems but are sensitive to increasing global temperatures. Coral-symbiont interactions are restricted by ecological and evolutionary determinants that constrain partner choice and influence holobiont response to environmental stress; however, little is known about how these processes shape thermal resilience of the holobiont. Here, we built a network of global coral-Symbiodiniaceae associations, mapped species traits (e.g., symbiont transmission mode and biogeography) and phylogenetic relationships of both partners onto the network, and assigned thermotolerance to both host and symbiont nodes. Using network analysis and phylogenetic comparative methods, we determined the contribution of species traits to thermal resilience of the holobiont, while accounting for evolutionary patterns among species. We found that the network shows nonrandom interactions among species, which are shaped by evolutionary history, symbiont transmission mode (horizontally transmitted [HT] or vertically transmitted [VT] corals) and biogeography. Coral phylogeny, but not Symbiodiniaceae phylogeny, symbiont transmission mode, or biogeography, was a good predictor of thermal resilience. Closely related corals have similar Symbiodiniaceae interaction patterns and bleaching susceptibilities. Nevertheless, the association patterns that explain increased host thermal resilience are not generalizable across the entire network butmore »
-
Medeiros, Juliana (Ed.)Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting formore »
-
Loranthaceae are parasitic plants in about 76 genera that are predominantly found in subtropical and temperate regions of the Southern Hemisphere as branch parasites. Australia is an area of high diversity with about 11 genera and 65 species, most of which are endemic. Loranthaceae branch parasites are also morphologically diverse having both radial and zygomorphic flowers that are typically bird pollinated and each of the four basic haustorial types. Haustorial types include epicortical roots (ERs) that grow along the host branch surface and at intervals form secondary attachments to their host, clasping unions where parasite tissue enlarges partially encircling the host branch, wood roses where host tissue proliferates forming a placenta where the parasite is attached, and bark strands that spread within the outer tissues of the host branch. We hypothesized that those haustoria where parasitic tissue proliferated, such as ERs and clasping unions, would occupy more mesic environments. To test this hypothesis and investigate other relationships among ecological parameters and haustorial form we used 17,753 sets of occurrence and ecological data from the Atlas of Living Australia (ALA) online repository for 42 species of Loranthaceae. We analyzed haustorial forms through comparative studies of haustoria housed at the UC Herbarium,more »
-
The tropical conservatism hypothesis (TCH) posits that the latitudinal gradient in biological diversity arises because most extant clades of animals and plants originated when tropical environments were more widespread and because the colonization of colder and more seasonal temperate environments is limited by the phylogenetically conserved environmental tolerances of these tropical clades. Recent studies have claimed support of the TCH, indicating that temperate plant diversity stems from a fewmore recently derived lineages that are nested within tropical clades, with the colonization of the temperate zone being associated with key adaptations to survive colder temperatures and regular freezing. Drought, however, is an additional physiological stress that could shape diversity gradients. Here, we evaluate patterns of evolutionary diversity in plant assemblages spanning the full extent of climatic gradients in North and South America. We find that in both hemispheres, extratropical dry biomes house the lowest evolutionary diversity, while tropical moist forests and many temperatemixed forests harbor the highest. Together, our results support a more nuanced view of the TCH, with environments that are radically different from the ancestral niche of angiosperms having limited, phylogenetically clustered diversity relative to environments that show lower levels of deviation from this niche. Thus, we argue thatmore »